實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),求:
(1)的值域;
(2)(a-1)2+(b-2)2的值域     
(3)a+b-3的值域。
解:由題意
易求A(-1,0)、B(-2,0).

∴C(-3,1).
(1)記P(1,2),kPC<<kPA,即∈(,1).
(2)|PC|2=(1+3)2+(2-1)2=17,
|PA|2=(1+1)2+(2-0)2=8,
|PB|2=(1+2)2+(2-0)2=13.
∴(a-1)2+(b-2)2的值域為(8,17).
(3)令u=a+b-3,
即a+b=u+3.-2<u+3<-1,
即-5<u<-4.
∴a+b-3的值域為(-5,-4).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),求:
(1)
b-2a-1
的值域;
(2)(a-1)2+(b-2)2的值域;
(3)a+b-3的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的有
(1)、(2)、(4)
(1)、(2)、(4)
(填上序號)
(1)過兩圓C1:x2+y2-4=0,C2:x2+y2-4x+4y-12=0的交點的直線方程是x-y+2=0.
(2)已知實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),則(a-1)2+(b-2)2的取值范圍是(8,17).
(3)在等比數(shù)列{an}中,0<a1<a4=1,若集合A={n|a1+a2+…+an-
1
a1
-
1
a2
-…-
1
an
≤0,n∈N*},則集合A中有4個元素.
(4)已知△ABC的周長為6,三邊a,b,c成等比數(shù)列,則△ABC的面積的最大值是
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省昆明一中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),求:
(1)的值域;
(2)(a-1)2+(b-2)2的值域;
(3)a+b-3的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省成都37中高三4月數(shù)學(xué)綜合練習(xí)(二)(解析版) 題型:填空題

下列命題正確的有    (填上序號)
(1)過兩圓C1:x2+y2-4=0,C2:x2+y2-4x+4y-12=0的交點的直線方程是x-y+2=0.
(2)已知實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),則(a-1)2+(b-2)2的取值范圍是(8,17).
(3)在等比數(shù)列{an}中,0<a1<a4=1,若集合A={n|a1+a2+…+an---…-≤0,n∈N*},則集合A中有4個元素.
(4)已知△ABC的周長為6,三邊a,b,c成等比數(shù)列,則△ABC的面積的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):7.4 簡單的線性規(guī)劃(解析版) 題型:解答題

實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),求:
(1)的值域;
(2)(a-1)2+(b-2)2的值域;
(3)a+b-3的值域.

查看答案和解析>>

同步練習(xí)冊答案