16.將直線y=2x繞原點逆時針旋轉(zhuǎn)90°,再向右平移1個單位,所得到的直線為(  )
A.$y=-\frac{1}{2}x+\frac{1}{2}$B.$y=-\frac{1}{2}x+1$C.y=2x-2D.$y=\frac{1}{2}x+1$

分析 根據(jù)兩條垂直的直線斜率積為-1,結(jié)合函數(shù)圖象的平移變換法則,可得變換后直線對應(yīng)的解析式.

解答 解:將直線y=2x繞原點逆時針旋轉(zhuǎn)90°,可得:直線y=$-\frac{1}{2}$x的圖象,
再向右平移1個單位,可得:y=$-\frac{1}{2}$(x-1),即$y=-\frac{1}{2}x+\frac{1}{2}$的圖象,
故選:A

點評 本題考查的知識點是函數(shù)的圖象,熟練掌握函數(shù)圖象的旋轉(zhuǎn)變換法則及平移變換法則,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,上頂點為B,若△BF1F2的周長為6,且點F1到直線BF2的距離為b.
(1)求橢圓C的方程;
(2)設(shè)A1,A2是橢圓C長軸的兩個端點,點P是橢圓C上不同于A1,A2的任意一點,直線A1P交直線x=m于點M,若以MP為直徑的圓過點A2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知O為坐標原點,F(xiàn)是雙曲線$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點,A,B分別為Γ的左、右頂點,P為Γ上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E,直線 BM與y軸交于點N,若|OE|=2|ON|,則 Γ的離心率為(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,a,b,c的對角分別為A,B,C的對邊,a2-c2=b2-$\frac{8bc}{5}$,a=6,△ABC的面積為24.
(1)求角A的正弦值;
(2)求邊b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的遞減區(qū)間為(  )
A.[$\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若{1,2}?A⊆{1,2,3,4,5},則滿足條件的集合A的個數(shù)是( 。
A.6B.8C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若直線y=x+b與曲線(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共點,則實數(shù)b的取值范圍是( 。
A.[1-2$\sqrt{2}$,3]B.[1-$\sqrt{2}$,3]C.[-1,1+2$\sqrt{2}$]D.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知i是虛數(shù)單位,則復(fù)數(shù)(1+i)2的虛部是( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ax的圖象過點$(1,\;\frac{1}{2})$,且點$(n-1,\;\frac{a_n}{n^2})(n∈{N^*})$在函數(shù)f(x)=ax的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令${b_n}=\frac{a_n}{n}$,若數(shù)列{bn}的前n項和為Sn,求Sn

查看答案和解析>>

同步練習冊答案