14.已知函數(shù)$f(x)={sin^4}x+{cos^4}x,x∈[-\frac{π}{4},\frac{π}{4}]$,若f(x1)<f(x2),則一定有( 。
A.x1<x2B.x1>x2C.${x_1}^2<{x_2}^2$D.${x_1}^2>{x_2}^2$

分析 把已知函數(shù)解析式變形,由f(x1)<f(x2),得sin22x1>sin22x2,即|sin2x1|>|sin2x2|,再由x1,x2的范圍可得|2x1|>|2x2|,即|x1|>|x2|,得到${{x}_{1}}^{2}>{{x}_{2}}^{2}$.

解答 解:f(x)=sin4x+cos4x=(sin2x+cos2x)2-2sin2xcos2x=$1-\frac{1}{2}si{n}^{2}2x$.
由f(x1)<f(x2),得$1-\frac{1}{2}si{n}^{2}2{x}_{1}<1-\frac{1}{2}si{n}^{2}2{x}_{2}$,
∴sin22x1>sin22x2,即|sin2x1|>|sin2x2|,
∵x1∈[-$\frac{π}{4},\frac{π}{4}$],x2∈[-$\frac{π}{4},\frac{π}{4}$],
∴2x1∈[-$\frac{π}{2}$,$\frac{π}{2}$],2x2∈[-$\frac{π}{2},\frac{π}{2}$],
由|sin2x1|>|sin2x2|,得|2x1|>|2x2|,即|x1|>|x2|,∴${{x}_{1}}^{2}>{{x}_{2}}^{2}$.
故選:D.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查三角函數(shù)線的應(yīng)用,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是一個(gè)幾何體挖去另一個(gè)幾何體所得的三視圖,若主視圖中長(zhǎng)方形的長(zhǎng)為2,寬為1,則該幾何體的體積為(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+t}\\{y=1+at}\end{array}\right.$(t為參數(shù),a∈R),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),設(shè)直線l與曲線C交于A、B兩點(diǎn),當(dāng)弦長(zhǎng)|AB|最短時(shí),直線l的普通方程為x+y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$若|f(x)|+a≥ax,則a的取值范圍是( 。
A.[-2,0)B.[0,1]C.(0,1]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|1<x2<4},B={x|x-1≥0},則A∩B=(  )
A.(1,2)B.[1,2)C.(-1,2)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.
(1)求函數(shù)y=f(x)圖象的對(duì)稱(chēng)軸方程;
(2)討論函數(shù)f(x)在$[0,\frac{π}{2}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,函數(shù)f(x)的圖象是折線段ABC,其中A,B,C的坐標(biāo)分別為(0,4),(2,0),(6,4),則f′(1)+f(3)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.化簡(jiǎn):
(1)lg8000+lg125-10lg4;
(2)(log32+log92)•(log43+log83)
(3)$\sqrt{2}$×$\root{4}{2}$×$\root{8}{2}$×…×$\root{{2}^{n}}{2}$…(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≥-2}\\{3x-2y≤3}\end{array}\right.$,則z=x+2y的最大值是7.

查看答案和解析>>

同步練習(xí)冊(cè)答案