【題目】已知函數(shù)f(x)=ex1﹣ax(a>1)在[0,a]上的最小值為f(x0),且x0<2,則實(shí)數(shù)a的取值范圍是(
A.(1,2)
B.(1,e)
C.(2,e)
D.( ,+∞)

【答案】B
【解析】解:∵f(x)=ex1﹣ax(a>1),
∴f′(x)=ex1﹣a,
令f′(x)=0,解得x=1+lna>1,
令g(a)=a﹣1﹣lna,其中a>1,則g′(a)=1﹣ =
∴g(a) 在(1,+∞)上遞增,
又g(1)=1﹣1﹣ln1=0,
∴當(dāng)a>1時(shí),g(a)=a﹣1﹣lna>0,
即a>1+lna,
∴當(dāng)0<x<1+lna時(shí),f′(x)<0,
1+lna<x<a時(shí),f′(x)>0,
∴f(x)在x=1+lna處取得最小值,
由x0=1+lna<2,得a<e,
∴實(shí)數(shù)a的取值范圍是(1,e).
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無限接近圓的面積,進(jìn)而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,底面是等腰梯形, ,,是線段的中點(diǎn),平面.

(1)求證:平面;

(2)若,求平面和平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,點(diǎn)Q在棱AB上.

(1)證明:平面.

(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;

(3)若,函數(shù)上的上界是,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點(diǎn)的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某技術(shù)公司新開發(fā)了A,B兩種新產(chǎn)品,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:

測試指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

產(chǎn)品A

8

12

40

32

8

產(chǎn)品B

7

18

40

29

6


(1)試分別估計(jì)產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),且

(1)求的值及的定義域;

(2)求在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),.

1)若上單調(diào)遞增,求正數(shù)的最大值;

2)若函數(shù)內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案