給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
,
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號為______(寫出所有正確命題的序號).
①雙曲線
y2
2
-x2=1
為焦點(diǎn)在y軸的雙曲線,且a=
2
,b=1,
故其漸近線方程為,y=±
a
b
x,即y=±
2
x
,故正確;
②當(dāng)x=
2
時(shí),sinx+
1
sinx
=-2,顯然不滿足sinx+
1
sinx
≥2
,
故命題p:“?x∈R+,sinx+
1
sinx
≥2
”應(yīng)為真命題,故錯(cuò)誤;
③由線性回歸方程為
?
y
=3+2x
,可得3+2(x+2)-3-2x=4,
即當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位,故正確;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,
則P(-1<ξ<0)=P((0<ξ<1)=0.5-P(ξ>1)=0.5-0.2=0.3,故錯(cuò)誤;
⑤已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
,
7
7-4
+
1
1-4
=2
10
10-4
+
-2
-2-4
=2
,
由合情推理的知識(shí)可得到一般性的等式為:
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4),故正確.
故答案為:①③⑤
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①過點(diǎn)P(2,3),且與圓(x-1)2+(y-1)2=1相切的直線方程為3x-4y+6=0;
②雙曲線
y2
49
-
x2
25
=-1的漸近線方程為y=±
7
5
x;
③不等式
1-2x
(x-1)(x+3)
≤0的解集為{x|x<-3或
1
2
≤x<1};
④已知點(diǎn)A(4,-2),拋物線y2=8x的焦點(diǎn)為F,點(diǎn)M在拋物線上移動(dòng),則|MA|+|MF|的最小值為6.
其中正確命題的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④已知
2
2-4
+
6
6-4
=2
5
5-4
+
3
3-4
=2
,
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號為
①③④
①③④
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號為
①③⑤
①③⑤
(寫出所有正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案