已知函數(shù)。
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)記函數(shù),若的最小值是,求函數(shù)    的解析式。
(1)單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是
(2)      (3)
本試題主要是考查了函數(shù)與導(dǎo)數(shù)的綜合運(yùn)用,利用導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,以及函數(shù)的單調(diào)區(qū)間的求解,和利用單調(diào)性求解參數(shù)的取值范圍的綜合運(yùn)用。
(1)根據(jù)已知參數(shù)a的值,得到導(dǎo)數(shù),然后分別令導(dǎo)數(shù)大于零,或者小于零,得到單調(diào)區(qū)間。
(2)利用在給定區(qū)間單調(diào)遞增,說明導(dǎo)數(shù)恒大于等于零成立,分離參數(shù)的思想求解范圍。
(3)求解函數(shù),利用其最小值為=-6,得到函數(shù)f((x)的解析式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x2(ax+b)在x=2時(shí)有極值(其中a,b∈R),其圖象在點(diǎn)(1,f(1))處的切線與直線3x+y=0平行,則函數(shù)f(x)的單調(diào)減區(qū)間為           (   )
A.(-∞,0)B.(0,2)C.(2,+∞) D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在一個(gè)半徑為1的半球材料中截取三個(gè)高度均為h的圓柱,其軸截面如圖所示,設(shè)三個(gè)圓柱體積之和為。

(1) 求f(h)的表達(dá)式,并寫出h的取值范圍是 ;
(2) 求三個(gè)圓柱體積之和V的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)在區(qū)間(0,3)是增函數(shù),則k的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222131281483.png" style="vertical-align:middle;" />,導(dǎo)函數(shù)為,則滿足的實(shí)數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

滿足,則方程解的個(gè)數(shù)
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案