函數(shù)f(x)=2x3-3x2-12x+5在[0,3]上的最大值為M,最小值為m,則M-m=
 
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:導數(shù)的綜合應用
分析:利用導數(shù)與函數(shù)的最值的關系即可求得函數(shù)的最大值及最小值,得出結論.
解答: 解:f′(x)=6x2-6x-12=6(x+1)(x-2),
由f′(x)=0得,x=-1,x=2,
∵f(0)=5,f(2)=2×23-3×22-12×2+5=-15,f(3)=2×33-3×32-12×3+5=-4,
∴M=5,m=-15,
∴M-m=5-(-15)=20.
點評:本題主要考查利用導數(shù)研究函數(shù)的最值知識,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1-3an-1=0(n∈N*
(Ⅰ)若存在一個常數(shù)λ,使得數(shù)列{an+λ}為等比數(shù)列,求出λ的值;
(Ⅱ)設a1=
1
2
,數(shù)列{an}的前n和為Sn,求滿足Sn>1090的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(x+1)(x2+ax+b),(a,b∈R)的圖象關于點(2,0)對稱,且對任意實數(shù)x≥m時,f(x)≥0恒成立,則實數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x,x≤0
x2-x,x>0
,若函數(shù)g(x)=f(x)-m有三個不同的零點,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線xcosθ-
3
y+2=0(θ∈R)的傾斜角為α,則角α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ∈(
π
2
,π),sinθ=
4
5
,則sin(θ+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線M:y2=4x與圓N:(x-1)2+y2=r2(其中r為常數(shù),r>0).過點(1,0)的直線l交拋物線M于A,B兩點,交圓N于C,D兩點,若滿足|AC|=|BD|的直線l恰有三條,則r的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=(3i-1)i(其中i為虛數(shù)單位),則復數(shù)z的共軛復數(shù)
.
z
等于(  )
A、-3+iB、-3-i
C、3+iD、3-i

查看答案和解析>>

同步練習冊答案