已知四棱錐PABCD的頂點(diǎn)P在底面的射影恰好是底面菱形ABCD的兩條對角線的交點(diǎn),AB3,PB4PA長度的取值范圍為________

 

 

(,5)

【解析】由題意知PO⊥平面ABCDAB3,PB4,設(shè)POh,OBxPA2h29x216x2x29252x2,因為0<x<3,所以7<252x2<25,所以<PA<5.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第5課時練習(xí)卷(解析版) 題型:填空題

如圖所示,正方體ABCDA1B1C1D1的棱長為6則以正方體ABCDA1B1C1D1的中心為頂點(diǎn),以平面AB1D1截正方體外接球所得的圓為底面的圓錐的全面積為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第3課時練習(xí)卷(解析版) 題型:填空題

P△ABC所在平面外一點(diǎn)OP在平面ABC內(nèi)的射影.

(1)P△ABC三邊距離相等,O△ABC的內(nèi)部,O△ABC________心;

(2)PA⊥BC,PBAC,O△ABC________心;

(3)PA,PB,PC與底面所成的角相等,O△ABC________心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時練習(xí)卷(解析版) 題型:填空題

如圖是一正方體的表面展開圖,B、N、Q都是所在棱的中點(diǎn),則在原正方體中,①ABCD相交;②MN∥PQ;③AB∥PE④MNCD異面;⑤MN∥平面PQC.

其中真命題的是________(填序號)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時練習(xí)卷(解析版) 題型:填空題

P是兩條異面直線l、m外的任意一點(diǎn)則下列命題中假命題的是________(填序號)

過點(diǎn)P有且僅有一條直線與l、m都平行;

過點(diǎn)P有且僅有一條直線與lm都垂直;

過點(diǎn)P有且僅有一條直線與lm都相交;

過點(diǎn)P有且僅有一條直線與lm都異面.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時練習(xí)卷(解析版) 題型:解答題

畫一個正方體ABCDA1B1C1D1,再畫出平面ACD1與平面BDC1的交線并且說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}滿足a1a2ann2(n∈N*)

(1)求數(shù)列{an}的通項公式;

(2)對任意給定的k∈N*是否存在p,rN*(k<p<r)使,,成等差數(shù)列?若存在,k分別表示pr(只要寫出一組);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時練習(xí)卷(解析版) 題型:解答題

我國是一個人口大國,隨著時間推移老齡化現(xiàn)象越來越嚴(yán)重,為緩解社會和家庭壓力,決定采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年交納養(yǎng)老儲備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1a2,…,an是一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利.這就是說,如果固定利率為r(r>0),那么,在第n年末,第一年所交納的儲備金就變?yōu)?/span>a1(1r)n1,第二年所交納的儲備金就變?yōu)?/span>a2(1r)n2,…,Tn表示到第n年所累計的儲備金總額.

(1)寫出TnTn1(n≥2)的遞推關(guān)系式;

(2)求證:TnAnBn,其中{An}是一個等比數(shù)列{Bn}是一個等差數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時練習(xí)卷(解析版) 題型:填空題

定義在(,0)∪(0∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)保等比數(shù)列函數(shù).現(xiàn)有定義在(,0)∪(0∞)上的如下函數(shù):

f(x)x2;②f(x)2x;③f(x);④f(x)ln(x)

其中是保等比數(shù)列函數(shù)的是__________(填序號)

 

查看答案和解析>>

同步練習(xí)冊答案