在三棱錐S―ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=,M、N分別為AB、SB的中點(diǎn).

(1)證明:AC⊥SB;

(2)求二面角N―CM―B的余弦值;

(3)求B點(diǎn)到平面CMN的距離.

解:(1)取AC中點(diǎn)D,連結(jié)SD,BD.

(2)取BD中點(diǎn)E,連結(jié)NE,則NE//SD.

故由

在平面ABC內(nèi)作EF⊥CM于F,連結(jié)NF,則由三垂線定理知CM⊥NF,

的平面角.

設(shè)

又由

,

即二面角

(3)設(shè)B點(diǎn)到平面CMN的距離為,由

另解:(1)取AC中點(diǎn)O,連結(jié)OS、OB,SA=SC,AB=BC,.

   平面SAC平面ABC,平面SAC平面ABC=AC.

SO平面ABC, SOBO.

以O(shè)為原點(diǎn),分別以O(shè)A、OB、OS為x軸、y軸、z軸的正向,建立空間直角坐標(biāo)系,則A(2,0,0),B(0,,0)S(0,0,),M(1,,0),N(0,,

=(-4,0,0),=(0,,).

=(-4,0,0)(0,)=0,

 (2)由(1)得設(shè)為平面CMN的一個(gè)法向量,則   取z=1,x=

∴ 

為平面ABC的一個(gè)法向量,

 ,   ∴二面角N-CM-B的大小為arccos

(3)由(1)(2)得 ,為平面CMN的一個(gè)法向量

∴點(diǎn)B到平面CMN的距離。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長為1的等邊三角形,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)證明:SA⊥BC;
(Ⅲ)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求證SA⊥SC;
(Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
2S
l
(其中l(wèi)是三角形的周長,S是三角形的面積),常用如下方法(如右圖):
①以內(nèi)切圓的圓心O為頂點(diǎn),將三角形ABC分割成三個(gè)小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
②設(shè)△ABC三邊長分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,則r=
2S
l

類比上述方法,請給出四面體內(nèi)切球半徑的計(jì)算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O為BC中點(diǎn).
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點(diǎn)E,使二面角B-SC-E的平面角的余弦值為
15
5
?若存在,確定E點(diǎn)位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
3
2
,3,則此三棱錐的外接球的表面積為( 。

查看答案和解析>>

同步練習(xí)冊答案