已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,sinC(sinB-sinC)=sin2B-sin2A
(1)求A;
(2)若△ABC的面積為
5
3
4
,b+c=6,求a.
考點:余弦定理,正弦定理
專題:計算題,解三角形
分析:(1)運用正弦定理,化角為邊,再由余弦定理可得A;
(2)由面積公式和余弦定理,計算即可得到a.
解答: 解:(1)由sinC(sinB-sinC)=sin2B-sin2A及正弦定理得
bc-c2=b2-a2即b2+c2-a2=bc,由余弦定理得cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
,
由0<A<π,則A=
π
3
;
(2)△ABC的面積S=
1
2
bcsinA=
5
3
4
,即
3
2
bc=
5
3
2
,
可得bc=5,又b+c=6,
則a2=b2+c2-2bccosA=(b+c)2-3bc=21,
則a=
21
點評:本題考查正弦定理、余弦定理和面積公式的運用,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2 -(m-x)2的最大值為m,則函數(shù)f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
p
=(sinA,cosA),
q
=(
3
cosA,-cosA)
(其中
q
0
)

(1)若0<A<
π
2
,方程
p
q
= t-
1
2
(t∈R)有且僅有一解,求t的取值范圍;
(2)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別是a,b,c,且a=
3
2
,若
p
q
,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-
3x
的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l⊥平面α,直線m?平面β,有下列四個命題:
①若α∥β,則l⊥m;
②若α⊥β,則l∥m;
③若l∥m,則α⊥β;
④若l⊥m,則α∥β.
以上命題中,正確命題的序號是( 。
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若凼數(shù)y=a-bsinx(b>0)的最大值為
3
2
,最小值為-
1
2
,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線y=kx(k>0)與函數(shù)y=x2的圖象交于點O,P,過P作PA⊥x軸于A.在△OAP中任取一點,則該點落在陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=asinx+blog2(x+
x2+1
)+4(a、b為常數(shù)),若f(x)在(0,+∞)上有最小值-4,則f(x)在(-∞,0)上有( 。
A、最大值-2
B、最大值 4
C、最大值10
D、最大值12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某畢業(yè)生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷.假定該畢業(yè)生得到甲、乙、丙三個公司面試的概率分別為
2
3
、p1、p2,且三個公司是否讓其面試是相互獨立的.記X為該畢業(yè)生得到面試的公司個數(shù).若P(X=3)=
1
6
,且E(X)=
5
3
,則p1+p2=
 

查看答案和解析>>

同步練習(xí)冊答案