(本題滿分15分) 已知拋物線的頂點是橢圓的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線的方程;
(2)已知動直線過點,交拋物線于、兩點.
若直線的斜率為1,求的長;
是否存在垂直于軸的直線被以為直徑的圓所截得的弦長恒為定值?如果存在,求出的方程;如果不存在,說明理由.
解:(1)由題意,可設(shè)拋物線方程為. …………1分
由,得. …………2分
拋物線的焦點為,. …………3分
拋物線D的方程為. …………4分
(2)設(shè),. …………5分
直線的方程為:, …………6分
聯(lián)立,整理得: …………7分
=.…………9分
(ⅱ) 設(shè)存在直線滿足題意,則圓心,過作直線的垂線,垂足為,設(shè)直線與圓的一個交點為.可得: …………10分
…………11分
即=
=
== …………13分
當時, ,此時直線被以為直徑的圓所截得的弦長恒為定值.
…………14分
因此存在直線滿足題意 …………15分
【解析】略
科目:高中數(shù)學 來源:2010-2011年江蘇省如皋市五校高二下學期期中考試理科數(shù)學 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產(chǎn)生一個 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省招生適應性考試文科數(shù)學試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;
(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市十校聯(lián)合體高三上學期期初摸底文科數(shù)學 題型:解答題
(本題滿分15分)已知直線與曲線相切
1)求b的值;
2)若方程在上恰有兩個不等的實數(shù)根,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市十校聯(lián)合體高三上學期期中考試文科數(shù)學 題型:解答題
(本題滿分15分)已知拋物線:(),焦點為,直線交拋物線于、兩點,是線段的中點,
過作軸的垂線交拋物線于點,
(1)若拋物線上有一點到焦點的距離為,求此時的值;
(2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省六校高三第一次聯(lián)考文科數(shù)學 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若在上不單調(diào)且僅在處取得最大值,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com