函數(shù)
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)若,證明函數(shù)上單調(diào)遞增;
(Ⅲ)在滿足(Ⅱ)的條件下,解不等式.

(1)函數(shù)為奇函數(shù).(2)  

解析試題分析:解:(Ⅰ)該函數(shù)為奇函數(shù)                                       1分
證明:函數(shù)定義域為關(guān)于原點對稱                2分
對于任意 所以函數(shù)為奇函數(shù).   4分
(Ⅱ) 設(shè)任意
        6分
,即
  ∴ 函數(shù)在上單調(diào)遞增. 8分
(Ⅲ)∵為奇函數(shù)
  10分
    函數(shù)上單調(diào)遞增
 ∴   即           12分
考點:函數(shù)性質(zhì)的運用
點評:主要是考查了函數(shù)單調(diào)性以及函數(shù)奇偶性的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:,當(dāng)時,;
時,
(1)求的解析式
(2)c為何值時,的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) )
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程恰有兩個不相等實根的概率;
(2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),求方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求,的值;
(2)當(dāng)時,若函數(shù)在區(qū)間[,2]上的最大值為28,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)。
(1)當(dāng)a=l時,求函數(shù)的極值;
(2)當(dāng)a2時,討論函數(shù)的單調(diào)性;
(3)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)解關(guān)于的不等式
(2)若,的解集非空,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4—5:不等式選講
設(shè)函數(shù)=
(I)求函數(shù)的最小值m;
(II)若不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案