分析 當(dāng)△ABC的面積取最大值時(shí),OC與OA,OB的夾角相等,設(shè)∠AOC=∠BOC=α,則∠AOB=2π-2α,求出S的表達(dá)式,利用導(dǎo)數(shù)法求出最值,可得答案.
解答 解:當(dāng)△ABC的面積取最大值時(shí),OC與OA,OB的夾角相等;
設(shè)∠AOC=∠BOC=α,∠AOB=2π-2α,
∵OA=OB=2,OC=3$\sqrt{2}$,
∴△ABC的面積S=$\frac{1}{2}$OA•OB•sin(2π-2α)+$\frac{1}{2}$OA•OC•sinα+$\frac{1}{2}$OC•OB•sinα
=6$\sqrt{2}$sinα-2sin2α
則S′=6$\sqrt{2}$cosα-4cos2α=6$\sqrt{2}$cosα-8cos2α+4,
僅S′=0,則cosα=1(舍去),或cosα=-$\frac{\sqrt{2}}{4}$,
即當(dāng)cosα=-$\frac{\sqrt{2}}{4}$時(shí),S取最大值,此時(shí)sinα=$\frac{\sqrt{14}}{4}$,sin2α=$-\frac{\sqrt{7}}{4}$
即S的最大值為:$\frac{7\sqrt{7}}{2}$
故答案為:$\frac{7\sqrt{7}}{2}$
點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)求函數(shù)的最值,三角形面積公式,轉(zhuǎn)化困難,難度較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com