分析 設(shè)P(x′,y′)為所求曲線的任意一點(diǎn),由題意可得:$\left\{\begin{array}{l}{{x}^{′}=x}\\{{y}^{′}=2y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x={x}^{′}}\\{y=\frac{{y}^{′}}{2}}\end{array}\right.$,代入橢圓$\frac{x^2}{4}+{y^2}=1$方程即可得出.
解答 解:設(shè)P(x′,y′)為所求曲線的任意一點(diǎn),由題意可得:$\left\{\begin{array}{l}{{x}^{′}=x}\\{{y}^{′}=2y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x={x}^{′}}\\{y=\frac{{y}^{′}}{2}}\end{array}\right.$,
代入橢圓$\frac{x^2}{4}+{y^2}=1$方程可得:$\frac{({x}^{′})^{2}}{4}$+$(\frac{{y}^{′}}{2})^{2}$=1,化為:(x′)2+(y′)2=4,
即所求的曲線方程為:x2+y2=4.
故答案為:x2+y2=4.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、坐標(biāo)變換,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{37}$-3 | B. | $\sqrt{37}$+3 | C. | $\sqrt{10}$ | D. | $\sqrt{82}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 3 | C. | $\frac{3}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x0∈R,x02+x0+1<0”的否定是:“?x∈R,x2+x+1>0.” | |
B. | “x>0,y>0”是“$\frac{y}{x}+\frac{x}{y}≥2$”的充要條件 | |
C. | 命題:“若sinx=siny則x=y”的逆否命題為真命題 | |
D. | 數(shù)據(jù)1,3,2,4,3,5的平均數(shù)、眾數(shù)、中位數(shù)都是3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5,6 | B. | 6,5 | C. | 15,2 | D. | 5,3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com