9.設(shè)全集為實(shí)數(shù)集R,A={x|3≤x<7},B={x|$\frac{1}{4}$≤2x≤8},C={x|x<a}.
(1)求∁R(A∪B)
(2)如果A∩C≠∅,求a的取值范圍.

分析 (1)求出集合B中不等式的解集,確定出集合B,求出A∪B,再求出(A∪B)的補(bǔ)集,
(2)根據(jù)A∩C≠∅,即可求出a的范圍.

解答 解:(1)設(shè)全集為實(shí)數(shù)集R,A={x|3≤x<7}=[3,7),B={x|$\frac{1}{4}$≤2x≤8}=[-2,3],
∴A∪B=[-2,7),
∴∁R(A∪B)=(-∞,-2)∪[7,+∞),
(2)A∩C≠∅,C={x|x<a},
∴a>3.
故a的取值范圍為:(3,+∞)

點(diǎn)評 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握交、并、補(bǔ)集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知一個(gè)圓的圓心在點(diǎn)(1,-1),并與直線4x-3y+3=0相切,則圓的方程為(x-1)2+(y-1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a2=$\frac{1}{2}$,an+1=SnSn+1,則Sn=$-\frac{1}{n}$或$\frac{1}{3-n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖(1)所示,在邊長為12的正方形AA′A${\;}_{1}^{′}$A1中,點(diǎn)B、C在線段AA′上,點(diǎn)B1、C1在線段A1A1′上,且有CC1∥BB1∥AA1,AB=3,BC=4.連結(jié)對角線AA1′,分別交BB1和CC1于點(diǎn)P和點(diǎn)Q.現(xiàn)將該正方形沿BB1和CC1折疊,使得A′A1′與AA1重合,構(gòu)成如圖(2)所示的三棱柱ABC-A1B1C1,連結(jié)AQ.
(1)在三棱柱ABC-A1B1C1中,求證:AP⊥BC;
(2)在三棱柱ABC-A1B1C1中,求直線A1Q與面APQ所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)U={n|n是小于9的正整數(shù)},A={n∈U|n是奇數(shù)},B={n∈U|n是3的倍數(shù)},則∁U(A∪B)=( 。
A.{2,4}B.{2,4,8}C.{3,8}D.{1,3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,a,b,c分別是角A,B,C的對邊,則A=$\frac{π}{4}$,c=$\sqrt{2}$,b=3,sinB=( 。
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x>0,y>0,且2x+y=2,則$\frac{1}{x}$+$\frac{1}{y}$的最小值是$\frac{3}{2}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}中,a5=3,a6=-2,則公差d=(  )
A.5B.1C.-5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足$\frac{z}{4+2i}$=i,i是虛數(shù)單位,則在復(fù)平面內(nèi)z對應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案