20.已知函數(shù)$f(x)=\sqrt{a{x^2}-2ax+1}$的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是[0,4].

分析 通過討論a的范圍結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:a=0時(shí),符合;
若a≠0,只需$\left\{\begin{array}{l}{a>0}\\{{△=4a}^{2}-4a≤0}\end{array}\right.$,
解得:0<a≤4,
綜上a∈[0,4],
故答案為:[0,4].

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的定義域問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{3x-y-2≤0}\\{x≥0,y≥0}\end{array}\right.$若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為2,記m為$\frac{1}{a}$+$\frac{1}$的最小值,則y=sin(mx+$\frac{π}{3}$)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=a+(bx-1)ex,(a,b∈R)
(1)如曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=x,求a,b的值;
(2)若a<1,b=2,關(guān)于x的不等式f(x)<ax的整數(shù)解有且只有一個(gè),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)z滿足(3+2i)z=13i,則z所對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax3-x2+bx(a,b∈R),f'(x)為其導(dǎo)函數(shù),且x=3時(shí)f(x)有極小值-9.
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若g(x)=f'(x)+(6m-8)x+4,h(x)=mx,當(dāng)m>0時(shí),對(duì)于任意x,g(x)和h(x)的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅲ)若不等式f'(x)>k(xlnx-1)-3x-4(k為正整數(shù))對(duì)任意正實(shí)數(shù)x恒成立,求k的最大值.(注:ln2≈0.69,ln3≈1.10,ln5≈1.61)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.地鐵三號(hào)線開通后,某地鐵站人流量增大,小A瞄準(zhǔn)商機(jī)在地鐵口投資72萬元購(gòu)得某商鋪使用權(quán),且商鋪?zhàn)罡呤褂媚晗逓?0年,現(xiàn)小A將該商鋪出租,第一年租金為5.4萬元,以后每年租金比上一年增加0.4萬元,設(shè)商鋪?zhàn)獬龅臅r(shí)間為x(0<x≤40)年.
(1)求商鋪?zhàn)獬鰔年后的租金總和y;
(2)若只考慮租金所得收益,則出租多長(zhǎng)時(shí)間能收回成本;
(3)小A考慮在商鋪出租x年后,將商鋪的使用權(quán)轉(zhuǎn)讓,若商鋪轉(zhuǎn)讓的價(jià)格F與出租的時(shí)間x滿足關(guān)系式:F(x)=-0.3x2+10.56x+57.6,則何時(shí)轉(zhuǎn)讓商鋪,能使小A投資此商鋪所得年平均收益P(x)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,已知a1=1,an+1=an+2(其中n∈N*),則a20=39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.口袋中有100個(gè)大小相同的紅球、白球、黑球,其中紅球45個(gè),從口袋中摸出一個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為( 。
A.0.32B.0.45C.0.64D.0.67

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A 的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg.在不超過600個(gè)工時(shí)的條件下,求生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案