【題目】已知數(shù)列{an}{bn}滿(mǎn)足,a12,b11,且對(duì)任意正整數(shù)n恒滿(mǎn)足2an+14an+2bn+1,2bn+12an+4bn1.

1)求證:{an+bn}為等比數(shù)列,{anbn}為等差列;

2)求證n1.

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析

【解析】

1,.兩式相加相減分別可得:,.又,化簡(jiǎn)即可證明結(jié)論.

2)由(1)可得:.利用數(shù)學(xué)歸納法,通過(guò)放縮即可證明結(jié)論.

證明:(1),

兩式相加相減分別可得:

,

,,

為等比數(shù)列,首項(xiàng)為3,公比為3.

為等差列,首項(xiàng)為1,公差為1.

(2)由(1)可得:

利用數(shù)學(xué)歸納法先證明:

時(shí),,成立.

假設(shè)時(shí)成立,即

時(shí),

,

因此左邊不等式成立.

利用數(shù)學(xué)歸納法先證明:

時(shí),,成立.

假設(shè)時(shí),

時(shí),

右邊不等式成立.

綜上可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.

(1)求橢圓的方程;

(2)過(guò)的直線(xiàn)分別交橢圓,且,問(wèn)是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)心肺疾病入院的50人進(jìn)行問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

(1)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?

(2)在上述抽取的6人中選2人,求恰好有1名女性的概率;

(3)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若函數(shù)的定義域?yàn)?/span>,且存在非零常數(shù),對(duì)任意 , 恒成立,則稱(chēng)為線(xiàn)周期函數(shù), 的線(xiàn)周期.

(1)下列函數(shù)①,②,③(其中表示不超過(guò)x的最大整數(shù)),是線(xiàn)周期函數(shù)的是 (直接填寫(xiě)序號(hào));

(2)若為線(xiàn)周期函數(shù),其線(xiàn)周期為,求證: 為周期函數(shù);

(3)若為線(xiàn)周期函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體,底面是梯形,四邊形是正方形,,,,,

(1)求證平面平面;

(2)設(shè)為線(xiàn)段上一點(diǎn),,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們某次考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),

(1)求分?jǐn)?shù)在[70,80)中的人數(shù);

(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,該5 人中成績(jī)?cè)?/span>[40,50)的有幾人?

(3)在(2)中抽取的5人中,隨機(jī)選取2 人,求分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的方程為,雙曲線(xiàn)的一條漸近線(xiàn)與軸所成的夾角為,且雙曲線(xiàn)的焦距為.

(1)求橢圓的方程;

(2)設(shè)分別為橢圓的左,右焦點(diǎn),過(guò)作直線(xiàn) (與軸不重合)交橢圓于 兩點(diǎn),線(xiàn)段的中點(diǎn)為,記直線(xiàn)的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)a,b滿(mǎn)足ab>0ab,由a、b、按一定順序構(gòu)成的數(shù)列( 。

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,邊a、b、c分別是角A、B、C的對(duì)邊,且滿(mǎn)足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面積為4,b=4,求△ABC的周長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案