【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求,的值;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),且在區(qū)間內(nèi)為減函數(shù),求實(shí)數(shù)的取值范圍.
【答案】(1),;(2)見解析;(3)
【解析】
試題分析:(1)利用導(dǎo)數(shù)幾何意義得:,又,解方程組可得(2)研究函數(shù)單調(diào)區(qū)間,先明確函數(shù)定義域R,再求函數(shù)導(dǎo)數(shù):,分類討論函數(shù)零點(diǎn)情況及導(dǎo)函數(shù)符號(hào):時(shí),導(dǎo)函數(shù)恒非負(fù),即函數(shù)在R上單調(diào)遞增;時(shí),增區(qū)間為,,減區(qū)間為;時(shí),增區(qū)間為,,減區(qū)間為.(3)由題意,不等式在有解,利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值,即
試題解析:(1),由題意得,即.
(2)由(1)得:,
①時(shí),恒成立,∴在R上單調(diào)遞增,
②時(shí),,,,,,,
∴增區(qū)間為,,減區(qū)間為.
③時(shí),,,,,,,
∴增區(qū)間為,,減區(qū)間為. 7分
(3),依題意,存在,使不等式成立,
即時(shí),即可.
所以滿足要求的a的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯(cuò)誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對(duì)稱圖形
C. 若是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點(diǎn),則()=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的右焦點(diǎn)為,且橢圓上一點(diǎn)到其兩焦點(diǎn),的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線:()與橢圓交于不同兩點(diǎn),,且,若點(diǎn)滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為曲線:上兩點(diǎn),與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)為曲線上一點(diǎn),在處的切線與直線平行,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長度單位為長度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OB是兩條互相垂直的筆直公路,半徑OA=2km的扇形AOB是某地的一名勝古跡區(qū)域.當(dāng)?shù)卣疄榱司徑庠摴袍E周圍的交通壓力,欲在圓弧AB上新增一個(gè)入口P(點(diǎn)P不與A,B重合),并新建兩條都與圓弧AB相切的筆直公路MB,MN,切點(diǎn)分別是B,P.當(dāng)新建的兩條公路總長最小時(shí),投資費(fèi)用最低.設(shè)∠POA=,公路MB,MN的總長為.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)當(dāng)為何值時(shí),投資費(fèi)用最低?并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,S20=17,則S30為( )
A.15
B.20
C.25
D.30
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com