如下圖所示,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng).
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)若橢圓上存在點(diǎn),使得,求的取值范圍.

(1);(2)

解析試題分析:(1)把點(diǎn)P坐標(biāo)代入橢圓C的方程解方程即可;(2)設(shè)然后利用點(diǎn)M在橢圓上和建立關(guān)于的方程,再消去得到m的關(guān)于的表達(dá)式,再利用基本不等式求范圍.
試題解析:(1)依題意,是線段的中點(diǎn),因?yàn)锳(-1,0),P,
所以點(diǎn)M的坐標(biāo)為   2分
由點(diǎn)M在橢圓上,所以,解得m=   6分
(2)解:設(shè)則,
   9分
因?yàn),OP⊥OM,所以
   11分
所以(或:導(dǎo)數(shù)法)

   14分
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知,其中,求的最小值,及此時(shí)的值.
(2)關(guān)于的不等式,討論的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分10分)選修4-5:不等式選講
,且.
(Ⅰ)求的最小值;
(Ⅱ)是否存在,使得?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右準(zhǔn)線,離心率,是橢圓上的兩動(dòng)點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,(其中為常數(shù)).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)當(dāng)且直線斜率均存在時(shí),求的最小值;
(3)若是線段的中點(diǎn),且,問(wèn)是否存在常數(shù)和平面內(nèi)兩定點(diǎn),,使得動(dòng)點(diǎn)滿(mǎn)足,若存在,求出的值和定點(diǎn),;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知x,y,z均為正數(shù).求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠擬建一座平面圖為矩形,面積為的三段式污水處理池,池高為1,如果池的四周墻壁的建造費(fèi)單價(jià)為,池中的每道隔墻厚度不計(jì),面積只計(jì)一面,隔墻的建造費(fèi)單價(jià)為,池底的建造費(fèi)單價(jià)為,則水池的長(zhǎng)、寬分別為多少米時(shí),污水池的造價(jià)最低?最低造價(jià)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)x、y滿(mǎn)足約束條件,則z=2x﹣y的最大值為( ).

A.0 B.2 C.3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

正數(shù)滿(mǎn)足的最小值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求函數(shù)y=的最大值;
(2)若函數(shù)y=a最大值為2,求正數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案