已知過(guò)點(diǎn)M(一3,0)的直線l被圓圓x2+(y+2)2=25所截得的弦長(zhǎng)為8,那么直線l的方程為
 
分析:設(shè)直線方程為y=k(x+3)或x=-3,根據(jù)直線l被圓圓x2+(y+2)2=25所截得的弦長(zhǎng)為8,可得圓心到直線的距離為3,
利用點(diǎn)到直線的距離公式確定k值,驗(yàn)證x=-3是否符合題意.
解答:解:設(shè)直線方程為y=k(x+3)或x=-3,
∵圓心坐標(biāo)為(0,-2),圓的半徑為5,
∴圓心到直線的距離d=
52-42
=3,
|3k+2|
1+k2
=3⇒k=
5
12
,∴直線方程為y=
5
12
(x+3),即5x-12y+15=0;
直線x=-3,圓心到直線的距離d=|-3|=3,符合題意,
故答案是:5x-12y+15=0或x=-3.
點(diǎn)評(píng):本題考查了待定系數(shù)法求直線方程,考查了直線與圓相交的相交弦長(zhǎng)公式,注意不要漏掉x=-3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長(zhǎng)為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過(guò)圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過(guò)圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊一模)如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且過(guò)點(diǎn)(
2
,
6
2
)

(I) 求圓C和橢圓D的方程;
(Ⅱ) 設(shè)橢圓D與x軸負(fù)半軸的交點(diǎn)為P,若過(guò)點(diǎn)M的動(dòng)直線l與橢圓D交于A、B兩點(diǎn),∠ANM=∠BNP是否恒成立?給出你的判斷并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知左焦點(diǎn)為F(-1,0)的橢圓過(guò)點(diǎn)E(1,
2
3
3
).過(guò)點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1
(3)若k1+k2=1,求證直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長(zhǎng)為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過(guò)圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過(guò)圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案