【題目】隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

【答案】
(1)解:由莖葉圖可知:甲班身高集中于160~169之間,而乙班身高集中于170~180之間.

因此乙班平均身高高于甲班


(2)解: ,

甲班的樣本方差為 +(170﹣170)2+(171﹣170)2+(179﹣170)2+(179﹣170)2+(182﹣170)2]=57


(3)解:設身高為176cm的同學被抽中的事件為A;

從乙班10名同學中抽中兩名身高不低于173cm的同學有:(181,173)(181,176)

(181,178)(181,179)(179,173)(179,176)(179,178)(178,173)

(178,176)(176,173)共10個基本事件,而事件A含有4個基本事件.∴


【解析】本題中“莖是百位和十位”,葉是個位,從圖中分析出參與運算的數(shù)據(jù),代入相應公式即可解答.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E、F為CD上兩點,且EF的長為定值,則下面四個值中不是定值的是(
A.點P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.△QEF的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定點M(3, )與拋物線y2=2x上的點P的距離為d1 , P到拋物線準線l的距離為d2 , 則d1+d2取最小值時,P點的坐標為(
A.(0,0)
B.(1,
C.(2,2)
D.( ,-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表達式為f(x)= ,則函數(shù)f(x)與函數(shù)g(x)= 的圖象在區(qū)間[﹣3,3]上的交點個數(shù)為(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和單調(diào)區(qū)間;
(2)設銳角△ABC的三個內(nèi)角A、B、C的對應邊分別是a,b,c,若 ,f( )=﹣ ,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f(
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點P(3,2)且在兩坐標軸上的截距相等的直線方程是(
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣1(x≠0),k∈R.
(1)當k=3時,試判斷f(x)在(﹣∞,0)上的單調(diào)性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實數(shù)k的取值范圍;
(3)當k∈R時,試討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關系為y1=18﹣ ,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關系為y2= (注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

同步練習冊答案