4.函數(shù)$f(x)={2^x}|{{{log}_{\frac{1}{2}}}x}|-1$的零點(diǎn)個數(shù)為( 。
A.1B.2C.3D.0

分析 由f(x)=0得|$lo{g}_{\frac{1}{2}}x$|=2-x,作出兩個函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:∵f(x)=2x|$lo{g}_{\frac{1}{2}}x$|-1,
∴由f(x)=0得|$lo{g}_{\frac{1}{2}}x$|=2-x,作出y=|$lo{g}_{\frac{1}{2}}x$|,y=2-x的圖象,
由圖象可知兩個圖象的交點(diǎn)個數(shù)為2個,
故選:B.

點(diǎn)評 本題主要考查根的個數(shù)的判斷,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x、y的取值如表所示:
x0134
y2.24.34.86.7
若y與x線性相關(guān),且y=2x+a,則a=0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A,B,C三點(diǎn)不共線,點(diǎn)O為平面ABC外的一點(diǎn),則下列條件中,能得到P∈平面ABC的是(  )
A.$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$B.$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{4}{3}\overrightarrow{OB}-\overrightarrow{OC}$
C.$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$D.$\overrightarrow{OP}=\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P($\sqrt{2}$,$\frac{\sqrt{6}}{2}$)在E上.
(1)求橢圓E的方程;
(2)過P作x軸的垂線交x軸于Q,過Q的直線交橢圓E于A,B兩點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,在平面四邊形ABCD中,AB=1,BC=2,△ACD為正三角形,則△BCD面積的最大值為( 。
A.2B.$\sqrt{5}$C.$\sqrt{2}+1$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知tanα=$\frac{3}{4}$,$π<α<\frac{3π}{2}$,則sinα-cosα=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知M,n分別是函數(shù)f(x)=ax5-bx+1(ab≠0)的最大值,最小值,則M+n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如果P:關(guān)于x的不等式x2+2ax+4>0對一切 x∈R都成立,q:關(guān)于 x 的方程 4x2+4(a-2)x+1=0無實(shí)數(shù)根,且P與q中有且只有一個是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$\underset{lim}{n→∞}$($\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$+…+$\frac{1}{1+2+3+…+n}$)=1.

查看答案和解析>>

同步練習(xí)冊答案