A. | 1 | B. | 2 | C. | 3 | D. | 0 |
分析 由f(x)=0得|$lo{g}_{\frac{1}{2}}x$|=2-x,作出兩個函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:∵f(x)=2x|$lo{g}_{\frac{1}{2}}x$|-1,
∴由f(x)=0得|$lo{g}_{\frac{1}{2}}x$|=2-x,作出y=|$lo{g}_{\frac{1}{2}}x$|,y=2-x的圖象,
由圖象可知兩個圖象的交點(diǎn)個數(shù)為2個,
故選:B.
點(diǎn)評 本題主要考查根的個數(shù)的判斷,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ | B. | $\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{4}{3}\overrightarrow{OB}-\overrightarrow{OC}$ | ||
C. | $\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$ | D. | $\overrightarrow{OP}=\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com