【題目】已知分別是海岸線上的三個集鎮(zhèn), 位于的正南方向處, 位于的北偏東60°方向處;
(1)為了緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上直達航線,使, .勘測時發(fā)現(xiàn)以為圓心, 為半徑的扇形區(qū)域為淺水區(qū),不適宜船只航行,問此航線是否影響船只航行?
(2)為了發(fā)展經(jīng)濟需要,政府計劃填海造陸,建造一個商業(yè)區(qū)(如圖四邊形所示),其中, , ,求該商業(yè)區(qū)的面積的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1) 判斷函數(shù)的單調(diào)性并給出證明;
(2)若存在實數(shù)使函數(shù)是奇函數(shù),求;
(3)對于(2)中的,若,當時恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二某班共有20名男生,在一次體驗中這20名男生被平均分成兩個小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:
(1)根據(jù)莖葉圖,分別寫出兩組學生身高的中位數(shù);
(2)從該班身高超過的7名男生中隨機選出2名男生參加;@球隊集訓,求這2名男生至少有1人來自第二組的概率;
(3)在兩組身高位于(單位: )的男生中各隨機選出2人,設這4人中身高位于(單位: )的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在區(qū)間上的值域.
(1)求的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 先把高二年級的2000名學生編號為1到2000,再從編號為1到50的50名學生中隨機抽取1名學生,其編號為,然后抽取編號為, , 的學生,這樣的抽樣方法是系統(tǒng)抽樣法
B. 線性回歸直線一定過樣本中心點
C. 若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1
D. 若一組數(shù)據(jù)1、、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有工人1000名,為了提高工人的生產(chǎn)技能,特組織工人參加培訓.其中250名工人參加過短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人).現(xiàn)從該工廠的工人中共抽查了100名工人作為樣本,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力是指工人一天加工的零件數(shù)),得到類工人生產(chǎn)能力的莖葉圖(圖1),類工人生產(chǎn)能力的頻率分布直方圖(圖2).
(1)在樣本中求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,現(xiàn)以樣本中頻率作為概率,從1000名工人中按分層抽樣共抽取名工人進行調(diào)查,請估計這名工人中的各類人數(shù),完成下面的列聯(lián)表.
若研究得到在犯錯誤的概率不超過的前提下,認為生產(chǎn)能力與培訓時間長短有關,則的最小值為多少?
參考數(shù)據(jù):
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= .
(1)求函數(shù)f(x)在[0,2]上得單調(diào)區(qū)間;
(2)當m=0,k∈R時,求函數(shù)g(x)=f(x)﹣kx2在R上零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的右焦點為F(1,0),且點P(1, )在橢圓C上,O為坐標原點.
(1)求橢圓C的標準方程;
(2)設過定點T(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍;
(3)過橢圓C1: + =1上異于其頂點的任一點P,作圓O:x2+y2= 的兩條切線,切點分別為M,N(M,N不在坐標軸上),若直線MN在x軸、y軸上的截距分別為m、n,證明: + 為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com