已知等差數(shù)列{an}的前n項和為Sn,且S4=S11,則a8為(  )
A、正數(shù)B、零C、負(fù)數(shù)D、不確定
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列通項的性質(zhì),即可得出結(jié)論.
解答: 解:∵等差數(shù)列{an}的前n項和為Sn,且S4=S11,
∴a5+a6+…+a11=7a8=0,∴a8=0,
故選:B.
點評:本題考查等差數(shù)列通項的性質(zhì),比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l為曲線y=
1
8
x2+3lnx的切線,其傾斜角為θ,則θ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx+cosx,則函數(shù)f(x)的一個單調(diào)遞增區(qū)間為( 。
A、(0,
π
4
)
B、(
π
4
,
π
2
)
C、(
π
2
,
4
)
D、(
4
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)a和b,定義運算“*”:
a2-ab,a≤b
b2-ab,a>b
,設(shè)f(x)=(2x-1)*(x-1),且關(guān)于x的方程f(x)=a(a∈R)恰有三個互不相等的實數(shù)根,則實數(shù)a的取值范圍
是( 。
A、(0,
1
4
B、[0,
1
4
]
C、[0,
1
16
]
D、(0,
1
4
]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某一隨機變量ξ的概率分布列如下,則b的值為( 。
ξ4a9
p0.50.1b
A、0.6B、0.5
C、0.4D、0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=4,an=4-
4
an-1
(n≥2),則a6=(  )
A、
9
4
B、
7
3
C、
20
9
D、
16
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將平面直角坐標(biāo)系中的格點(橫、縱坐標(biāo)均為整 數(shù)的點)按如  下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(0,0)處標(biāo)0,點(1,0)處標(biāo)1,點(1,-1)處標(biāo)2,點(0,-1)處標(biāo)3,點(-1,-1)處標(biāo)4,點(-1,0)處標(biāo)5,…,依此類推,則標(biāo)簽2012×2013對應(yīng)的格點的坐標(biāo) 為( 。
A、(-1006,1006)
B、(1005,-1006)
C、(1005,1006)
D、(1006,1006)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的首項為11,{bn}為等差數(shù)列且bn=an+1-an(n∈N*),若則b3=-2,b10=12,則a8=(  )
A、0B、3C、8D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+4.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線y=x+1垂直,求實數(shù)a的值;
(2)在區(qū)間[1,3]內(nèi)至少存在一個實數(shù)x,使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案