設y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上變化時,y恒取正值,求x的取值范圍.

∪(8,+∞)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知關于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區(qū)間(-1,0)內,另一根在區(qū)間(1,2)內,求實數(shù)m的取值范圍;
(2)若方程兩根均在區(qū)間(0,1)內,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在R上的函數(shù)及二次函數(shù)滿足:
(1)求的解析式;
(2);
(3)設,討論方程的解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=a-是偶函數(shù),a為實常數(shù).
(1)求b的值.
(2)當a=1時,是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一次函數(shù)上的增函數(shù),,已知
(1)求;
(2)若單調遞增,求實數(shù)的取值范圍;
(3)當時,有最大值,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一個根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有一張長為80 cm,寬為60cm的長方形鐵皮ABCD,準備用它做成一只無蓋長方體鐵皮盒,要求材料利用率為100%,不考慮焊接處損失.如圖,若長方形ABCD的一個角剪下一塊正方形鐵皮,作為鐵皮盒的底面,用余下材料剪拼后作為鐵皮盒的側面,設長方體的底面邊長為x(cm),高為y(cm),體積為V(cm3)

(1)求出xy的關系式;
(2)求該鐵皮盒體積V的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200千克,每千克飼料的價格為1.8元,飼料的保管費與其他費用平均每千克每天0.03元,購買飼料每次支付運費300元.
(1)求該廠多少天購買一次飼料才能使平均每天支付的總費用最少;
(2)若提供飼料的公司規(guī)定,當一次購買飼料不少于5噸時,其價格可享受八五折優(yōu)惠(即原價的85%).問:該廠是否應考慮利用此優(yōu)惠條件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(其中是實數(shù)常數(shù),
(1)若,函數(shù)的圖像關于點(—1,3)成中心對稱,求的值;
(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;
(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案