精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導函數,且滿足f(x)<f'(x),則不等式 f(2)的解集是(
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)

【答案】A
【解析】解:設g(x)= ,(x>0),∵f(x)<f'(x),∴g′(x)= >0,
∴g(x)在(0,+∞)單調遞增,
f(2),得 ,即g(x2+x)>g(2),
∴x2+x>2,
解得:x<﹣2或x>1.
∴不等式 f(2)的解集是(﹣∞,﹣2)∪(1,+∞).
故選:A.
【考點精析】通過靈活運用利用導數研究函數的單調性,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在Rt△ABC中,∠A=90°,點D是邊BC上的動點,且| |=3,| |=4, (λ>0,μ>0),則當λμ取得最大值時,| |的值為(
A.
B.3
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校開展“讀好書,好讀書”活動,要求本學期每人至少讀一本課外書,該校高一共有100名學生,他們本學期讀課外書的本數統(tǒng)計如圖所示. (Ⅰ)求高一學生讀課外書的人均本數;
(Ⅱ)從高一學生中任意選兩名學生,求他們讀課外書的本數恰好相等的概率;
(Ⅲ)從高一學生中任選兩名學生,用ζ表示這兩人讀課外書的本數之差的絕對值,求隨機變量ζ的分布列及數學期望E.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x+1)定義域是[﹣2,3],則y=f(2x﹣1)的定義域(
A.
B.[﹣1,4]
C.[﹣5,5]
D.[﹣3,7]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在淘寶網上,某店鋪專賣孝感某種特產.由以往的經驗表明,不考慮其他因素,該特產每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克,1<x≤5)滿足:當1<x≤3時,y=a(x﹣3)2+ ,(a,b為常數);當3<x≤5時,y=﹣70x+490.已知當銷售價格為2元/千克時,每日可售出該特產600千克;當銷售價格為3元/千克時,每日可售出150千克.
(1)求a,b的值,并確定y關于x的函數解析式;
(2)若該特產的銷售成本為1元/千克,試確定銷售價格x的值,使店鋪每日銷售該特產所獲利潤f(x)最大(x精確到0.1元/千克).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,扇形AOB所在圓的半徑是1,弧AB的中點為C,動點M,N分別在OA,OB上運動,且滿足OM=BN,∠AOB=120°.
(Ⅰ)設 ,若 ,用a,b表示 ;
(Ⅱ)求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,三邊a,b,c所對應的角分別是A,B,C,已知a,b,c成等比數列.
(1)若 + = ,求角B的值;
(2)若△ABC外接圓的面積為4π,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足sin = =6.
(1)求△ABC的面積;
(2)若c+a=8,求b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx,g(x)= +x﹣a(a∈R). (Ⅰ)若直線x=m(m>0)與曲線y=f(x)和y=g(x)分別交于M,N兩點.設曲線y=f(x)在點M處的切線為l1 , y=g(x)在點N處的切線為l2
(。┊攎=e時,若l1⊥l2 , 求a的值;
(ⅱ)若l1∥l2 , 求a的最大值;
(Ⅱ)設函數h(x)=f(x)﹣g(x)在其定義域內恰有兩個不同的極值點x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案