【題目】偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,在某次考試成績統(tǒng)計中,某老師為了對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行分析,隨機(jī)挑選了8位同學(xué),得到他們的兩科成績偏差數(shù)據(jù)如下:
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)偏差 | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差 | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)若與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若該次考試該數(shù)平均分為120分,物理平均分為91.5分,試由(1)的結(jié)論預(yù)測數(shù)學(xué)成績?yōu)?/span>128分的同學(xué)的物理成績.
參考數(shù)據(jù):
【答案】(1);(2).
【解析】
試題(1)先根據(jù)表中的數(shù)據(jù),求出樣本中心,再求出回歸方程中的和即可;(2)設(shè)該同學(xué)的物理成績?yōu)?/span>,則物理偏差為:,而數(shù)學(xué)偏差為,代入回歸方程解得即得該同學(xué)的物理成績.
試題解析:解:(1)由題意,,
,
,
所以,
故線性回歸方程為,
(2)由題意,設(shè)該同學(xué)的物理成績?yōu)?/span>,則物理偏差為:.
而數(shù)學(xué)偏差為128-120=8,
∴,解得,
所以,可以預(yù)測這位同學(xué)的物理成績?yōu)?/span>94分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),在以原點為極點,軸的非
負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)過點且與直線平行的直線交于,兩點,求點到,兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用表示自然數(shù)n的所有因數(shù)中最大的那個奇數(shù),例如:9的因數(shù)有1,3,9,,10的因數(shù)有1,2,5,10,,那么______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≥﹣+ax+b恒成立,求a時,實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在底面是菱形的四棱錐中,,點E在PD上,且.
(1)證明:平面ABCD;
(2)求二面角的大;
(3)棱PC上是否存在一點F,使平面AEC?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-2,-1),則雙曲線的焦距為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com