如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3
(Ⅰ)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;
(Ⅱ)求二面角B-AC-A1的大。
分析:(Ⅰ)作OD∥AA1交A1B1于D,連C1D,根據(jù)梯形中位線定理及平行四邊形判定定理,可得四邊形ODC1C是平行四邊形,進(jìn)而OC∥C1D,根據(jù)線面平行的判定定理,可得OC∥平面A1B1C1
(Ⅱ)以B1為原點(diǎn)建立空間直角坐標(biāo)系,求出平面ABC的一個(gè)法向量和平面AA1C1C的一個(gè)法向量,代入向量夾角公式,求出二面角B-AC-A1平面角的余弦值,進(jìn)而可得二面角B-AC-A1的大。
解答:證明:(Ⅰ)作OD∥AA1交A1B1于D,連C1D
則OD∥BB1∥CC1
因?yàn)镺是AB的中點(diǎn),
所以OD=
1
2
(AA1+BB1)=3=CC1

則四邊形ODC1C是平行四邊形,
因此有OC∥C1D,C1D?平面C1B1A1
且OC?平面C1B1A1,
則OC∥平面A1B1C1…6′
(Ⅱ)如圖,以B1為原點(diǎn)建立空間直角坐標(biāo)系,
則A(0,1,4),B(0,0,2),C(1,0,3),
AB
=(0,-1,-2)
,
BC
=(1,0,1)

設(shè)
m
=(x,y,z)
是平面ABC的一個(gè)法向量,則
AB
m
=0
,
BC
m
=0
得:
-y-2z=0
x+z=0

取x=-z=1,
m
=(1,2,-1)

顯然,
n
=(1,1,0)
為平面AA1C1C的一個(gè)法向量
cos?
m
,
n
>=
m
n
|
m
|•|
n
|
=
1+2+0
6
×
2
=
3
2

結(jié)合圖形可知所求二面角為銳角
所以二面角B-AC-A1的大小是30°…12′
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,直線與平面平行的判定,其中(I)的關(guān)鍵是證得OC∥C1D,(II)的關(guān)鍵是構(gòu)造空間坐標(biāo)系,將二面角問(wèn)題轉(zhuǎn)化為向量夾角問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大;
(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(I)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1
(II)求此幾何體的體積;
(Ⅲ)點(diǎn)F為AA1上一點(diǎn),若BF⊥平面COB1,求AF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年黑龍江哈師大附中高三上期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖是一個(gè)直三棱柱被削去一部分后的幾何體的直觀圖與三視圖中的側(cè)視圖、俯視圖.在直觀圖中,的中點(diǎn).又已知側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求證:EM∥平面ABC;

(2)試問(wèn)在棱DC上是否存在點(diǎn)N,使NM⊥平面? 若存在,確定

點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年黑龍江哈師大附中高三上期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖是一個(gè)直三棱柱被削去一部分后的幾何體的直觀圖與三視圖中的側(cè)視圖、俯視圖.在直觀圖中,的中點(diǎn).又已知側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(Ⅰ)求證:EM∥平面ABC;

(Ⅱ)求出該幾何體的體積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案