已知函數(shù)是奇函數(shù),定義域?yàn)閰^(qū)間D(使表達(dá)式有意義的實(shí)數(shù)x 的集合),
(1)求實(shí)數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)0<a<1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并證明;
(3)當(dāng)x∈A=[a,b)(AD,a是底數(shù))時(shí),函數(shù)值組成的集合為[1,+∞),求實(shí)數(shù)a、b的值。
解:(1)∵y=f(x)是奇函數(shù),
∴對(duì)任意x∈D,有,
化簡(jiǎn)此式,得,恒成立,
必有,
。
(2)當(dāng)0<a<1時(shí),函數(shù)在D∈(-1,1)上是單調(diào)增函數(shù);
理由:令
設(shè),
,
在D∈(-1,1)上單調(diào)遞減,
于是,當(dāng)0<a<1時(shí),函數(shù)在D∈(-1,1)上是單調(diào)增函數(shù)。
(3)∵
,
∴依據(jù)(2),當(dāng)0<a<1時(shí),函數(shù)在A上是增函數(shù),

解得。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•天門模擬)已知命題:
①函數(shù)f(x)=
1
lgx
在(0,+∞)上是減函數(shù);
②已知
a
=(3,4),
b
=(0,-1),則
a
b
方向上的投影為-4;
③函數(shù)f(x)=2sinxcos|x|的最小正周期為π;
④函數(shù)f(x)的定義域?yàn)镽,則f(x)是奇函數(shù)的充要條件是f(0)=0;
⑤在平面上,到定點(diǎn)(2,1)的距離與到定直線3x+4y-10的距離相等的點(diǎn)的軌跡是拋物線.
其中,正確命題的序號(hào)是
②③
②③
.(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)是定義在上的奇函數(shù),且,

(1)確定函數(shù)的解析式;

(2)用定義證明上是增函數(shù);

(3)解不等式.

【解析】第一問(wèn)利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0

結(jié)合條件,解得函數(shù)解析式

第二問(wèn)中,利用函數(shù)單調(diào)性的定義,作差變形,定號(hào),證明。

第三問(wèn)中,結(jié)合第二問(wèn)中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關(guān)系得到結(jié)論。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年寧夏高三第一次月考理科數(shù)學(xué)卷 題型:填空題

已知函數(shù)是奇函數(shù),它們的定域,且它們?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052301280281257894/SYS201205230129230312282224_ST.files/image003.png">上的圖象如圖所示,則不等式的解集是          .

              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年寧夏高三第一次月考理科數(shù)學(xué)卷 題型:填空題

已知函數(shù)是奇函數(shù),它們的定域,且它們?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223565085931008/SYS201205222358186406115700_ST.files/image003.png">上的圖象如圖所示,則不等式的解集是          .

              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年廣東省汕頭市高一下學(xué)期期末考試數(shù)學(xué) 題型:選擇題

已知函數(shù)是定義在R上的奇函數(shù),若對(duì)于任意給

定的不等實(shí)數(shù),不等式

恒成立,則不等式的解集為(  ※  )

A.   B.   C.    D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案