在下列條件下,可判斷平面與平面平行的是(     )

A.α、β都垂直于平面γ
B.α內(nèi)不共線的三個(gè)點(diǎn)到β的距離相等
C.l,m是α內(nèi)兩條直線且l∥β,m∥β
D.l,m是異面直線,且l∥α,m∥α,l∥β,m∥β

D

解析試題分析:A:垂直于同一個(gè)平面的兩個(gè)平面可以平行也可以相交,A錯(cuò);B:當(dāng)內(nèi)不共線的三點(diǎn)到的距離相等時(shí),兩個(gè)平面也可以相交, B錯(cuò);C:由平面與平面平行的判定定理可知,C錯(cuò),選D.
考點(diǎn):面面平行的判定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在正方體ABCD﹣A1B1C1D1中,M,N分別是BC1,CD1的中點(diǎn),則下列說(shuō)法錯(cuò)誤的是( 。

A.MN與CC1垂直 B.MN與AC垂直 C.MN與BD平行 D.MN與A1B1平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知直線,平面,且,,給出下列四個(gè)命題:
①若,則;
②若,則;
③若,則;
④若,則
其中真命題的個(gè)數(shù)為(      )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知三條不重合的直線,兩個(gè)不重合的平面,有下列命題:
①若,且,則
②若,且,則
③若,,則
④若,則
其中真命題的個(gè)數(shù)是(    )

A.4 B.3  C.2 D.1 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

a和b是兩條異面直線,下列結(jié)論正確的個(gè)數(shù)是(  )
(1) 過(guò)不在a、b上的任一點(diǎn),可作一個(gè)平面與a、b都平行.
(2) 過(guò)不在a、b上的任一點(diǎn),可作一條直線與a、b都相交.
(3) 過(guò)a可以并且只可以作一個(gè)平面與b平行.
(4) 過(guò)不在a、b上的任一點(diǎn),可作一條直線與a、b都垂直.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

下列命題中,真命題是(  )

A.直線m、n都平行于平面,則m∥n
B.設(shè)是真二面角,若直線,則
C.設(shè)m、n是異面直線,若m∥平面,則n與相交
D.若直線m、n在平面內(nèi)的射影依次是一個(gè)點(diǎn)和一條直線,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)是兩條不同的直線,是一個(gè)平面,則下列命題正確的是 (    )

A.若,,則 B.若,則
C.,,則 D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

棱長(zhǎng)為1的正方體ABCD A1B1C1D1中,點(diǎn)M,N分別在線段AB1,BC1上,且AM=BN,給出以下結(jié)論:
①AA1⊥MN
②異面直線AB1,BC1所成的角為60°
③四面體B1 D1CA的體積為
④A1C⊥AB1,A1C⊥BC1, 其中正確的結(jié)論的個(gè)數(shù)為(  )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知三棱錐S-ABC,G1,G2分別為△SAB,△SAC的重心,則G1G2與△SBC,△ABC所在平面的位置關(guān)系是   (     )

A.垂直和平行B.均為平行C.均為垂直D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案