【題目】祖暅?zhǔn)俏覈?guó)南北朝時(shí)代的偉大科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:冪勢(shì)既同,則積不容異,稱為祖暅原理.意思是底面處于同一平面上的兩個(gè)同高的幾何體,若在等高處的截面面積始終相等,則它們的體積相等.利用這個(gè)原理求半球O的體積時(shí),需要構(gòu)造一個(gè)幾何體,該幾何體的三視圖如圖所示,則該幾何體的體積為_____,表面積為_____

【答案】 3π

【解析】

根據(jù)給定的幾何體的三視圖,得到該幾何體為一個(gè)圓柱挖去一個(gè)圓錐,得出圓柱的底面半徑和高,利用體積和側(cè)面積、以及圓的公式,即可求解.

根據(jù)給定的幾何體的三視圖,可得該幾何體表示一個(gè)圓柱挖去一個(gè)圓錐,

且底面半徑1,高為1的組合體,

所以幾何體的體積為:

幾何體的表面積為:3π,

故答案為:,(3π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,點(diǎn)在棱上.

)求證:平面

)試確定點(diǎn)的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為矩形, ,的中點(diǎn),沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過(guò)程中,得到如下有三個(gè)命題:

平面,且的長(zhǎng)度為定值;

三棱錐的最大體積為;

③在翻折過(guò)程中,存在某個(gè)位置,使得.

其中正確命題的序號(hào)為__________.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多面體的三視圖正視圖、側(cè)視圖、俯視圖如圖所示,M,N分別是,的中點(diǎn).

1)求證:平面

2)求證:平面;

3)若這個(gè)多面體的六個(gè)頂點(diǎn)A,BC,,,都在同一個(gè)球面上,求這個(gè)球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的最小值.

(Ⅱ)若在區(qū)間上有兩個(gè)極值點(diǎn),

(i)求實(shí)數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2+2a4a9,S636

1)求anSn;

2)若數(shù)列{bn}滿足b11,求證:nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)解答以下問題,要求解決兩個(gè)問題的方法不同.

1)如圖1,要在一個(gè)半徑為1米的半圓形鐵板中截取一塊面積最大的矩形,如何截?并求出這個(gè)最大矩形的面積.

2)如圖2,要在一個(gè)長(zhǎng)半軸為2米,短半軸為1米的半個(gè)橢圓鐵板中截取一塊面積最大的矩形,如何截?并求出這個(gè)最大矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)中,內(nèi)角A,BC所對(duì)的邊分別為a,b,c,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C+y2=1,不與坐標(biāo)軸垂直的直線l與橢圓C相交于MN兩點(diǎn).

(1)若線段MN的中點(diǎn)坐標(biāo)為 (1,),求直線l的方程;

(2)若直線l過(guò)點(diǎn)Pp,0),點(diǎn)Qq,0)滿足kQM+kQN=0,求pq的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案