4.從甲、乙、丙、丁、戊5個(gè)人中選1名組長(zhǎng)1名副組長(zhǎng),但甲不能當(dāng)副組長(zhǎng),不同的選法種數(shù)是( 。
A.6B.10C.16D.20

分析 本題是一個(gè)分類(lèi)計(jì)數(shù)問(wèn)題首先不考慮限制條件從5個(gè)人中選兩個(gè)安排兩個(gè)組長(zhǎng)有A52,若甲當(dāng)副組長(zhǎng)只有從4個(gè)人中選一個(gè)做組長(zhǎng),共有A41,用所有的結(jié)果減去不合題意的得到結(jié)果.

解答 解:由題意知本題是一個(gè)分類(lèi)計(jì)數(shù)問(wèn)題
首先不考慮限制條件有A52,
若甲偏要當(dāng)副組長(zhǎng)有A41,
用所有的結(jié)果減去不合題意的得到A52-A41=16為所求.
故選C.

點(diǎn)評(píng) 本題考查分類(lèi)計(jì)數(shù)原理,考查有限制條件的元素的排列,是一個(gè)基礎(chǔ)題,解題時(shí)使用所有的排列減去不合題意的排列,本題也可以從正面來(lái)考慮.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.不等式的解集$|{1+x+\frac{x^2}{2}}|<1$是( 。
A.{x|-1<x<0}B.$\left\{{\left.x\right|-\frac{3}{2}<x<0}\right\}$C.$\left\{{\left.x\right|-\frac{5}{4}<x<0}\right\}$D.{x|-2<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=alnx-$\frac{4x-1}{x+1}$.
(1)若函數(shù)f(x)在(1,2)上單調(diào)遞減,試求正數(shù)a的取值范圍;
(2)設(shè)h(x)=x2-2bx+4,a=-2,若對(duì)于任意x1∈[1,2],存在x2∈[5,10],使得f(x1)≥h(x2)成立,試確定b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=x2+cosx是( 。
A.奇函數(shù)B.是偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知i為虛數(shù)單位,則(1-2i)(2+i)=4-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式(x-2y+1)(x+y-3)<0表示的區(qū)域?yàn)椋ā 。?table class="qanwser">A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={x|x2-3x+2<0},B={x|2<2x<8},則A∩B=(  )
A.{x|1<x<2}B.{x|1<x<3}C.{x|2<x<3}D.{x|-1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值等于( 。
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.-$\frac{1}{7}$D.-$\frac{\sqrt{21}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A滿(mǎn)足條件:當(dāng)p∈A時(shí),總有$\frac{-1}{p+1}$∈A(p≠0且p≠-1),已知2∈A,則集合A的子集的個(gè)數(shù)至少為8.

查看答案和解析>>

同步練習(xí)冊(cè)答案