(本小題滿分13分)

已知橢圓的離心率為,橢圓短軸長為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知動直線與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值。

 

【答案】

(Ⅰ)(Ⅱ)①

【解析】

試題分析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013072812190296843248/SYS201307281220018739767689_DA.files/image005.png">滿足,

。解得,則橢圓方程為 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分

(Ⅱ)(1)將代入中得 

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013072812190296843248/SYS201307281220018739767689_DA.files/image012.png">中點(diǎn)的橫坐標(biāo)為,所以,解得 ┄┄┄┄8分

(2)由(1)知

所以 

 

;┄┄┄┄┄┄┄┄┄11分

=┄┄┄┄┄┄┄┄┄┄┄┄┄┄13分

考點(diǎn):本題考查了橢圓方程的求法及直線與橢圓的位置關(guān)系

點(diǎn)評:圓錐曲線是歷年高考中比較常見的壓軸題之一,近年高考中其解答難度有逐漸降低的趨勢,通過解析幾何的自身特點(diǎn),結(jié)合相應(yīng)的數(shù)學(xué)知識,比如不等式、數(shù)列、函數(shù)、向量、導(dǎo)數(shù)等加以綜合。這就要求在分析、解決問題時要充分利用數(shù)形結(jié)合、設(shè)而不求法、弦長公式及韋達(dá)定理綜合思考,重視函數(shù)與方程思想、數(shù)形結(jié)合思想、對稱思想、等價轉(zhuǎn)化思想的應(yīng)用。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案