精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知函數
(1)寫出函數的遞減區(qū)間;
(2)討論函數的極大值或極小值,如有試寫出極值;
(1)(2)函數極大值,極小值

試題分析:解:令,得,,
x變化時,的符號變化情況及的增減性如下表所示:


-1

3


+
0
-
0
+


極大值

極小值

(1)由表可得函數的遞減區(qū)間為
(2)由表可得,當時,函數有極大值;當時,函數有極小值
點評:求函數的性質,常結合函數的導數來求出。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數在點處的切線方程為
(1)求函數的解析式;
(2)若對于區(qū)間[-2,2]上任意兩個自變量的值都有求實數c的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

是定義在上的函數,且,當時,,那么當時,=                .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分10分)某企業(yè)擬投資兩個項目,預計投資項目萬元可獲得利潤
萬元;投資項目萬元可獲得利潤萬元.若該企業(yè)用40
萬元來投資這兩個項目,則分別投資多少萬元能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知是函數的兩個零點,函數的最小值為,記
(ⅰ)試探求之間的等量關系(不含);
(ⅱ)當且僅當在什么范圍內,函數存在最小值?
(ⅲ)若,試確定的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列函數為奇函數,且在上單調遞減的函數是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義函數,若存在常數C,對任意的,存在唯一的,使得,則稱函數在D上的幾何平均數為C.已知,則函數上的幾何平均數為(     )
A.        B.       C.      D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數是定義域為的奇函數,(1)求實數的值;(2)證明上的單調函數;(3)若對于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

某人從2009年起,每年1月1日到銀行新存入元(一年定期),若年利率為保持不變,且每年到期存款和利息自動轉為新的一年定期,到2012年底將所有存款及利息全部取回,則可取回的錢數(元)為
A.B.C.D.

查看答案和解析>>

同步練習冊答案