【題目】已知,,,函數(shù).

1)設(shè),,若是奇函數(shù),求的值;

2)設(shè),,判斷函數(shù)上的單調(diào)性并加以證明;

3)設(shè),,函數(shù)的圖象是否關(guān)于某垂直于軸的直線對(duì)稱?如果是,求出該對(duì)稱軸,如果不是,請(qǐng)說明理由.

【答案】1;(2)證明見解析;(3)對(duì)稱軸為,理由見解析.

【解析】

1)根據(jù)已知條件,將代入函數(shù)的解析式,得出,利用奇函數(shù)的定義,可求出實(shí)數(shù)的值;

2)判斷出函數(shù)和函數(shù)的單調(diào)性,然后利用函數(shù)單調(diào)性的運(yùn)算法則,可判斷出函數(shù)的單調(diào)性,然后利用函數(shù)單調(diào)性的定義加以證明;

3)根據(jù)函數(shù)圖象的對(duì)稱軸為直線,得出對(duì)任意的實(shí)數(shù)恒成立,即可求出實(shí)數(shù)的值.

1)由已知,,,由于函數(shù)為奇函數(shù),

對(duì)任意的恒成立,,因此,;

2)當(dāng)時(shí),函數(shù)為增函數(shù),函數(shù)為減函數(shù),

,所以,函數(shù)上是增函數(shù),

下面利用定義來證明出函數(shù)的單調(diào)性.

任取,則,

,,即,又,

,,所以,,即.

因此,函數(shù)上是增函數(shù);

3,若函數(shù)的圖象是軸對(duì)稱圖形,且對(duì)稱軸為直線,

,

,即,

對(duì)任意的恒成立,,即,

因此,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列都是由實(shí)數(shù)組成的無窮數(shù)列.

(1)若都是等差數(shù)列,判斷數(shù)列是否是等差數(shù)列,說明理由;

(2)若,且是等比數(shù)列,求的所有可能值;

(3)若都是等差數(shù)列,數(shù)列滿足,求證: 是等差數(shù)列的充要條件是: 中至少有一個(gè)是常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求的最大值及該函數(shù)取得最大值時(shí)的值;

(2)在中, 分別是角 所對(duì)的邊,若,且,求邊的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,,點(diǎn)的中點(diǎn).

1)求證:平面;

2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐ABCD中,都是等邊三角形,平面PAD平面ABCD,且,

1)求證:CDPA;

2EF分別是棱PAAD上的點(diǎn),當(dāng)平面BEF//平面PCD時(shí),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知美國蘋果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需要另外投入16美元,設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)萬部并全部銷售完,每萬部的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬部時(shí),蘋果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列四個(gè)命題正確的序號(hào)是( )

是偶函數(shù) ②③當(dāng)時(shí),取得極小值④滿足的正整數(shù)n的最小值為9

A.①②③B.①③④C.①②D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程的測(cè)試,F(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如圖所示的頻率分布直方圖:

1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,.

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動(dòng)一次。若擲出正面,遙控車向前移動(dòng)一格(從)若擲出反面遙控車向前移動(dòng)兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案