設(shè)數(shù)列的前項和為,且

(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,求證:

 

【答案】

(1)。2)

【解析】

試題分析:(1)當(dāng)時,.          1分

當(dāng)時,

.                          3分

不適合上式,

                  4分

(2)證明: ∵

當(dāng)時, 

當(dāng)時,,        ①

.         ②

①-②得:

,                    8分

此式當(dāng)時也適合.

N

,

.          10分

當(dāng)時,,

.                                     12分

,

,即

綜上,.            14分

考點(diǎn):本題主要考查數(shù)列的概念,等差數(shù)列、等比數(shù)列的基礎(chǔ)知識,“錯位相減法”,“放縮法”證明不等式。

點(diǎn)評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識,本解答從確定通項公式入手,明確了所研究數(shù)列的特征。“分組求和法”、“錯位相消法”、“裂項相消法”是高考常?嫉綌(shù)列求和方法。先求和,再利用“放縮法”證明不等式,是常用方法。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模文)(13分)  設(shè)數(shù)列的前項和為,且,其中為常數(shù)且

(1)證明:數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列的公比,數(shù)列滿足

   求數(shù)列的通項公式;

(3)設(shè),數(shù)列的前項和為,求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省佛山一中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本題滿分14分).設(shè)數(shù)列的前項和為,且
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)在數(shù)列的每兩項之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項之間插入個數(shù),使這個數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項和為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市海淀區(qū)高三5月查漏補(bǔ)缺數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列的前項和為,且滿足.

(Ⅰ)求證:數(shù)列為等比數(shù)列;

(Ⅱ)求通項公式;

(Ⅲ)若數(shù)列是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新疆烏魯木齊一中高三第一次月考文科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項和為,且對于

任意的正整數(shù)都成立,其中為常數(shù),且

(1)求證:數(shù)列是等比數(shù)列(4分)

(2)設(shè)數(shù)列的公比,數(shù)列滿足:)(,

 

,求證:數(shù)列是等差數(shù)列,并求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習(xí)冊答案