設{an}是等差數(shù)列,若a2=3,a7=13,則數(shù)列{an}前8項的和為( )
A.128
B.80
C.64
D.56
【答案】分析:利用等差數(shù)列的通項公式,結合已知條件列出關于a1,d的方程組,求出a1,d,代入等差數(shù)列的前n項和公式即可求解.或利用等差數(shù)列的前n項和公式,結合等差數(shù)列的性質a2+a7=a1+a8求解.
解答:解:解法1:設等差數(shù)列{an}的首項為a1,公差為d,
由等差數(shù)列的通項公式以及已知條件得
解得,故s8=8+=64.

解法2:∵a2+a7=a1+a8=16,
∴s8=×8=64.
故選C.
點評:解法1用到了基本量a1與d,還用到了方程思想;
解法2應用了等差數(shù)列的性質:{an}為等差數(shù)列,當m+n=p+q(m,n,p,q∈N+)時,am+an=ap+aq
特例:若m+n=2p(m,n,p∈N+),則am+an=2ap
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}是等差數(shù)列,bn=(
1
2
an.已知b1+b2+b3=
21
8
,b1b2b3=
1
8
.求等差數(shù)列的通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是等差數(shù)列,a1+a3+a5=9,a6=9.則這個數(shù)列的前6項和等于( 。
A、12B、24C、36D、48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1、設{an}是等差數(shù)列,且a1+a5=6,則a3等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•惠州模擬)設{an}是等差數(shù)列,且a2+a3+a4=15,則這個數(shù)列的前5項和S5=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是等差數(shù)列,a1>0,a2007+a2008>0,a2007•a2008<0,則使Sn>0成立的最大自然數(shù)n是( 。

查看答案和解析>>

同步練習冊答案