已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示的圖是圓.

(1)求t的取值范圍;

(2)求其中面積最大的圓的方程;

(3)若點P(3,4t2)恒在所給圓內(nèi),求t的取值范圍.

(1) .

(2)圓的方程是

(3) .


解析:

(1)已知方程可化為(x-t-3)2+(y+1-4t2)2=(t+3)2+(1-4t2)2-16t4-9,

r2=-7t2+6t+1>0.

即7t2-6t-1<0,

解得.

(2).

時,,此時圓的面積最大,

對應的圓的方程是.

(3)當且僅當t2+1<-7t2+6t+1時,點P恒在圓內(nèi),∴8t2-6t<0,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圓,求的取值范圍;
(2)若(1)中的圓的直線x+2y-1=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m;
(3)在(2)得條件下,求以MN為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2+kx+2y+k2=0所表示的圓有最大的面積,則直線y=(k+1)x+2的傾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2+4x-2y-4=0,則x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2-2mx-4y+5m=0的曲線是圓C
(1)求m的取值范圍;
(2)當m=-2時,求圓C截直線l:2x-y+1=0所得弦長;
(3)若圓C與直線2x-y+1=0相交于M,N兩點,且以MN為直徑的圓過坐標原點O,求m的值?

查看答案和解析>>

同步練習冊答案