在平面直角坐標(biāo)系中,已知向量=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t)
(1)若,且為坐標(biāo)原點(diǎn)),求向量;
(2)若向量與向量共線,當(dāng)k>4,且tsinθ取最大值4時(shí),求
【答案】分析:(1)根據(jù)所給的點(diǎn)的坐標(biāo)寫出向量的坐標(biāo),根據(jù)兩個(gè)向量垂直數(shù)量積為零,得到一個(gè)關(guān)于變量的方程,題目另一個(gè)條件是兩個(gè)向量模長(zhǎng)之間的關(guān)系,列出方程解出結(jié)果.
(2)根據(jù)向量共線的充要條件,寫出變量之間的關(guān)系式,根據(jù)二次函數(shù)的最值特點(diǎn)得到結(jié)果,求出變量的值寫出向量的數(shù)量積.
解答:解:(1)∵點(diǎn)A(8,0),B(n,t),
,
,
,
得n=2t+8.
,又,
∴(2t)2+t2=5×64,
解得t=±8,
當(dāng)t=8時(shí),n=24;當(dāng)t=-8時(shí),n=-8.

(2)∵向量與向量共線,
∴t=-2ksinθ+16,
∵k>4,
,
故當(dāng)時(shí),tsinθ取最大值,有,得k=8.
這時(shí),,k=8,tsinθ=4,得t=8,則

點(diǎn)評(píng):要讓學(xué)生體會(huì)思路的形成過(guò)程,體會(huì)數(shù)學(xué)思想方法的應(yīng)用.要學(xué)生發(fā)現(xiàn)解題方法和思路的形成過(guò)程,總結(jié)解題規(guī)律.學(xué)生要搞好解題后的反思,從而提高學(xué)生綜合應(yīng)用知識(shí)分析和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案