已知函數(shù),其中.
(Ⅰ)當(dāng)=1時(shí),求在(1,)的切線方程
(Ⅱ)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。

(Ⅰ);(Ⅱ) 的取值范圍為(-∞,0].

解析試題分析:(Ⅰ)當(dāng)=1時(shí),,∴=,=,∴在(1,)的切線斜率=,∴在(1,)的切線方程為;(Ⅱ) 當(dāng)時(shí),≥0,則在[0,+∞)上是增函數(shù),∴當(dāng)時(shí),=0,適合;分當(dāng)時(shí),≤0,則≤0,則在[0,+∞)上是減函數(shù),∴當(dāng)時(shí),=0,不適合;當(dāng)時(shí),1>>0,則,當(dāng)∈[0, ]時(shí),≥0,當(dāng)∈[,+∞)時(shí),≤0,∴在[0, ]是增函數(shù),在[,+∞)是減函數(shù),當(dāng)時(shí),<0,故不適合,∴的取值范圍為(-∞,0].
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,切線斜率,等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值。(2)涉及時(shí),成立,通過研究函數(shù)的單調(diào)性,明確了函數(shù)值取到最小值的情況,確定得到a的范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對(duì)任意,都有
(3)若,對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若上的最大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值。
(2)若關(guān)于的方程有三個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;
(3)已知當(dāng)(1,+∞)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),b∈Z),曲線在點(diǎn)(2,)處的切線方程為=3.
(1)求的解析式;
(2)證明:曲線=上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)是,處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最
小值,據(jù)此判斷的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分8分)已知,函數(shù).
(Ⅰ)求的極值(用含的式子表示);
(Ⅱ)若的圖象與軸有3個(gè)不同交點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案