【題目】某校從高一年級A,B兩個班中各選出7名學生參加物理競賽,他們的成績(單位:分)的莖葉圖如圖所示,其中A班學生的平均分是85分

(1)求m的值,并計算A班7名學生成績的方差s2;
(2)從成績在90分以上的學生中隨機抽取兩名學生,求至少有一名A班學生的概率.

【答案】
(1)解:∵A班學生的平均分是85分,

=85,

解得m=5,

∴A班7位學生成績的方差為S2= [72+112+(﹣5)2+02+02+(﹣7)2+(﹣6)2]=40


(2)解:由莖葉圖知成績在90分以上的學生中,A班有2名,B班有3名,

從成績在90分以上的學生中隨機抽取兩名學生,

基本事件總數(shù)n= =10,

至少有一名A班學生的對立事件是取到的兩名學生都是B班學生,

∴至少有一名A班學生的概率p=1﹣ =


【解析】(1)由A班學生的平均分是85分,能求出m=5,由此能求出A班7位學生成績的方差.(2)由莖葉圖知成績在90分以上的學生中,A班有2名,B班有3名,從成績在90分以上的學生中隨機抽取兩名學生,基本事件總數(shù)n為10,至少有一名A班學生的對立事件是取到的兩名學生都是B班學生,由此能求出至少有一名A班學生的概率.
【考點精析】本題主要考查了莖葉圖的相關知識點,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,, 分別為的中點,點在線段上.

(Ⅰ)求證:平面;

(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一扇形的周長為20cm,當扇形的圓心角α等于多少時,這個扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱ABC-A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1CAC1

(Ⅰ)求證:平面AA1B1BBB1C1C;

(Ⅱ)若DCC1中點,ADB是二面角A-CC1-B的平面角,求直線AC1與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點為圓心,橢圓的短半軸為半徑的圓與直線x﹣y+ =0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求 的取值范圍;
(3)若B點關于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本市某玩具生產(chǎn)公司根據(jù)市場調查分析,決定調整產(chǎn)品生產(chǎn)方案,準備每天生產(chǎn), , 三種玩具共100個,且種玩具至少生產(chǎn)20個,每天生產(chǎn)時間不超過10小時,已知生產(chǎn)這些玩具每個所需工時(分鐘)和所獲利潤如表:

玩具名稱

工時(分鐘)

5

7

4

利潤(元)

5

6

3

(Ⅰ)用每天生產(chǎn)種玩具個數(shù)種玩具表示每天的利潤(元);

(Ⅱ)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式和S=f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(2015)+f(2016)的值分別為(

A.f(x)= sin x+1,S=2016
B.f(x)= cos x+1,S=2016
C.f(x)= sin x+1,S=2016.5
D.f(x)= cos x+1,S=2016.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.

(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c的圖像如圖,直線y=0在原點處與函數(shù)圖像相切,且此切線與函數(shù)圖像所圍成的區(qū)域(陰影)面積為
(1)求f(x)的解析式
(2)若常數(shù)m>0,求函數(shù)f(x)在區(qū)間[﹣m,m]上的最大值.

查看答案和解析>>

同步練習冊答案