19.已知(1,2)∈{(x,y)|ax+by=1,bx+ay=1},求實(shí)數(shù)a,b的值.

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷,此集合是由坐標(biāo)點(diǎn)構(gòu)成的集合.所以a+2b=1,b+2a=1,即可求實(shí)數(shù)a,b的值.

解答 解:由題意:集合是由坐標(biāo)點(diǎn)構(gòu)成的集合,
∴坐標(biāo)(1,2)滿足方程$\left\{\begin{array}{l}{ax+by=1}\\{bx+ay=1}\end{array}\right.$即$\left\{\begin{array}{l}{a+2b=1}\\{b+2a=1}\end{array}\right.$,
解得:a=b=$\frac{1}{3}$.
故得實(shí)數(shù)實(shí)數(shù)a=$\frac{1}{3}$,b=$\frac{1}{3}$.

點(diǎn)評(píng) 此題考查學(xué)生掌握元素與集合關(guān)系的判斷,理解子集的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)集合A={x|2a-1≤x≤a+3},集合B={x|x<-1或x>5}.
(1)當(dāng)a=-2時(shí),求A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=8,且△ABC的面積的最大值為4$\sqrt{3}$,則此時(shí)△ABC的形狀為( 。
A.等腰三角形B.正三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,a1=5,an=2an-1+2n-1(n≥2,n∈N*
(1)證明:數(shù)列{$\frac{{{a_n}-1}}{2^n}$}為等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)令bn=lg$\frac{{{a_n}-1}}{n}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知F1、F2為橢圓C:$\frac{x^2}{4}+\frac{y^2}{9}$=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,∠F1PF2=90°,則|PF1|•|PF2|等于(  )
A.4B.8C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.執(zhí)行如圖程序中,若輸出y的值為1,則輸入x的值為( 。
A.0B.1C.0或1D.-1,0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1-{2}^{x}}{a+{2}^{x+1}}$是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給以證明;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知0<α<β<π,且cosαcosβ=$\frac{1}{5}$,sinαsinβ=$\frac{2}{5}$,則tan(β-α)的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.冪函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(8,2),則此冪函數(shù)的解析式為f(x)=${x}^{\frac{1}{3}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案