等差數(shù)列{ an}中a3=7,a1+a2+a3=12,記Sn為{an}的前n項(xiàng)和,令bn=anan+1,數(shù)列{數(shù)學(xué)公式}的前n項(xiàng)和為T(mén)n
(1)求an和Sn;
(2)求證:Tn數(shù)學(xué)公式;
(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說(shuō)明理由.

解:(1)設(shè)數(shù)列{an}的公差為d,
由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,
解得a1=1,d=3,
∴an=3n-2,
=
(2)∵bn=anan+1=(3n-2)(3n+1),
=,

=
(3)由(2)知,,∴,,
∵T1,Tm,Tn成等比數(shù)列,
=,
,
當(dāng)m=1時(shí),7=,n=1,不合題意;
當(dāng)m=2時(shí),,n=16,符合題意;
當(dāng)m=3時(shí),,n無(wú)正整數(shù)解;
當(dāng)m=4時(shí),,n無(wú)正整數(shù)解;
當(dāng)m=5時(shí),,n無(wú)正整數(shù)解;
當(dāng)m=6時(shí),,n無(wú)正整數(shù)解;
當(dāng)m≥7時(shí),m2-6m-1=(m-3)2-10>0,
,而,
所以,此時(shí)不存在正整數(shù)m,n,且7<m<n,使得T1,Tm,Tn成等比數(shù)列.
綜上,存在正整數(shù)m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比數(shù)列.
分析:(1)設(shè)數(shù)列{an}的公差為d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,解得a1=1,d=3,由此能求出an和Sn
(2)由bn=anan+1=(3n-2)(3n+1),知=,由此能夠證明Tn
(3)由(2)知,,故,,,由T1,Tm,Tn成等比數(shù)列,能夠推導(dǎo)出存在正整數(shù)m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比數(shù)列.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,考查不等式的證明,考查正整數(shù)的求法.考查數(shù)列、不等式知識(shí),考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想,培養(yǎng)學(xué)生的抽象概括能力、推理論證能力、運(yùn)算求解能力和創(chuàng)新意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=24,則此數(shù)列的前13項(xiàng)之和為
26
26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列是{an}中,已知a4與a2與a8的等比中項(xiàng),a3+2是a2與a6的等差中項(xiàng),Sn是前n項(xiàng)和,則滿足
9
11
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
19
21
(n∈N*)
的所有n值的和為
35
35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在等差數(shù)列是{an}中,已知a4與a2與a8的等比中項(xiàng),a3+2是a2與a6的等差中項(xiàng),Sn是前n項(xiàng)和,則滿足數(shù)學(xué)公式的所有n值的和為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列是{an}中,已知a4與a2與a8的等比中項(xiàng),a3+2是a2與a6的等差中項(xiàng),Sn是前n項(xiàng)和,則滿足
9
11
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
19
21
(n∈N*)
的所有n值的和為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省六校聯(lián)盟高三(下)回頭考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在等差數(shù)列是{an}中,已知a4與a2與a8的等比中項(xiàng),a3+2是a2與a6的等差中項(xiàng),Sn是前n項(xiàng)和,則滿足的所有n值的和為   

查看答案和解析>>

同步練習(xí)冊(cè)答案