已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<
π
2
)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
4
個(gè)單位,得到函數(shù)g(x),求g(x)的單調(diào)遞增區(qū)間.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)由圖象知函數(shù)的周期,進(jìn)而可得ω,再由點(diǎn)(
12
,0)
和(0,1)在函數(shù)圖象上,可得φ和A,可得解析式;
(Ⅱ)由圖象變換易得g(x)=2sin(2x-
π
3
),由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
可得.
解答: 解:(Ⅰ)由圖象知函數(shù)的周期T=2(
11π
12
-
12
)=π

ω=
T
=2
,又∵點(diǎn)(
12
,0)
在函數(shù)圖象上,
Asin(
6
+φ)=0
,即sin(
6
+φ)=0

∵0<φ<
π
2
,∴
6
6
+φ<
3

6
+φ=π
,解得φ=
π
6
,
又點(diǎn)(0,1)在函數(shù)圖象上,
Asin
π
6
=1
,解得A=2.
f(x)=2sin(2x+
π
6
)
;
(Ⅱ)由題知g(x)=f(x-
π
4
)=2sin[2(x-
π
4
)+
π
6
]=2sin(2x-
π
3
)
,
2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,可得kπ-
π
12
≤x≤kπ+
12
,k∈Z

∴g(x)的遞增區(qū)間為:[kπ-
π
12
,kπ+
12
],k∈Z
點(diǎn)評(píng):本題考查三角函數(shù)的圖象與解析式,涉及三角函數(shù)圖象的變換,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=sin(ωπx-
π
4
)(ω>0)在區(qū)間(-1,0)上有且僅有一條平行于y軸的對(duì)稱軸,則ω的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,2),B(2,2),C(0,3),若點(diǎn)M(a,b)是線段AB上一點(diǎn),則直線CM斜率的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|,x∈[0,m],其中m∈R且m>0,若函數(shù)f(x)的值域?yàn)閇0,4],則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

讀書決定一個(gè)人的修養(yǎng)和品位,在“文明湖北,美麗宜昌”讀書活動(dòng)中,某學(xué)習(xí)小組開展綜合實(shí)踐活動(dòng),隨機(jī)調(diào)查了該校部分學(xué)生的課外閱讀情況,繪制了平均每人每天課外閱讀時(shí)間統(tǒng)計(jì)圖.

(1)補(bǔ)全扇形統(tǒng)計(jì)圖中缺失的數(shù)據(jù);
(2)被調(diào)查學(xué)生中,每天課外閱讀時(shí)間為60分鐘左右的有20人,求被調(diào)查的學(xué)生總?cè)藬?shù);
(3)請(qǐng)你通過計(jì)算估計(jì)該校學(xué)生平均每人每天課外閱讀的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a≠b且a2sinθ+acosθ-1=0、b2sinθ+bcosθ-1=0,則連接(a,a2)、(b,b2)兩點(diǎn)的直線與單位圓x2+y2=1的位置關(guān)系是(  )
A、相交B、相切
C、相離D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑是13的球面上有A、B、C三點(diǎn),AB=6,BC=8,AC=10,則球心到截面ABC的距離為( 。
A、12B、8C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)在區(qū)間[-8,-3]上單調(diào)遞減,則函數(shù)f(x)在區(qū)間[3,8]上( 。
A、單調(diào)遞增,且有最小值f(3)
B、單調(diào)遞增,且有最大值f(3)
C、單調(diào)遞減,且有最小值f(8)
D、單調(diào)遞減,且有最大值f(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),求函數(shù)y=f(x)的圖象的兩相鄰對(duì)稱軸的距離為
π
2

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案