【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標方程和直線的的普通方程;

2)設(shè)點,若直線與曲線交于兩點,且,求實數(shù)的值.

【答案】(1,;(2

【解析】試題分析:第一問利用極坐標與平面直角坐標之間的轉(zhuǎn)換關(guān)系,將曲線的極坐標方程轉(zhuǎn)化為平面直角坐標方程,消參將直線的參數(shù)方程轉(zhuǎn)化為普通方程,第二問根據(jù)直線的參數(shù)方程當中參數(shù)的幾何意義,將直線的參數(shù)方程與曲線的平面直角坐標方程聯(lián)立,消元化為關(guān)于的一元二次方程,結(jié)合根與系數(shù)之間的關(guān)系,得到關(guān)于的等量關(guān)系式,求得結(jié)果,一定要驗證兩個交點的存在性.

試題解析:(1)曲線C的極坐標方程是,化為

可得直角坐標方程:

直線L的參數(shù)方程是t為參數(shù)),

消去參數(shù)t可得

t為參數(shù)),代入方程:,

化為,

,解得-1<m<3

,

解得.又滿足實數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些會有缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如表所示:

(1)作出散點圖;

(2)如果線性相關(guān),求出回歸直線方程.

(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)

(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的情形?

(2)這6人同時加入6項不同的活動,每項活動限1人,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?

(3)將這6人作為輔導(dǎo)員安排到3項不同的活動中,每項活動至少安排1名輔導(dǎo)員;求丁、戊、己恰好被安排在同一項活動中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位射擊運動員,在某天訓(xùn)練已各射擊10次,每次命中的環(huán)數(shù)如下:

7 8 7 9 5 4 9 10 7 4

9 5 7 8 7 6 8 6 7 7

通過計算估計,甲、乙二人的射擊成績誰更穩(wěn);

規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,依據(jù)上述數(shù)據(jù)估計,在第11次時,甲、乙人分別獲得優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當x[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是( )

A.多于4個 B.4個

C.3個 D.2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖中(1)、(2)、(3)、(4)為她們刺銹最簡單的四個圖案,這些圖案都是由小正方向構(gòu)成,小正方形數(shù)越多刺銹越漂亮,向按同樣的規(guī)律刺銹(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形

(1)求的值

(2)求出的表達式

(3)求證時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.

(1)求出a,b的值;

(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線,曲線為參數(shù)), 以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)若射線分別交兩點, 求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的兩個焦點分別為,且橢圓經(jīng)過點.

(1)求橢圓的離心率;

(2)過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案