已知集合A={x|x2-2x-8<0},B={x|x2+2x-3>0},C={x|x2-3ax+2a2<0}試求實數(shù)a的取值范圍使C⊆A∩B.
分析:先求出集合A與集合B,從而求出A∩B,討論a的正負,根據(jù)條件C⊆A∩B建立不等關(guān)系,解之即可.
解答:解:依題意得:A={x|-2<x<4},B={x|x>1或x<-3,}
∴A∩B={x|1<x<4}
(1)當a=0時,C=Φ,符合C⊆A∩B;
(2)當a>0時,C={x|a<x<2a},
要使C⊆A∩B,則
a≥1
2a≤4
,
解得:1≤a≤2;
(3)當a<0時,C={x|2a<x<a},
∵a<0,C∩(A∩B)=Φ,
∴a<0不符合題設(shè).
∴綜合上述得:1≤a≤2或a=0.
點評:本題主要考查了一元二次不等式的解法,以及集合關(guān)系中的參數(shù)取值問題,同時考查了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德陽三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習冊答案