分析 (1)聯(lián)立方程,解得即可,
(2)假設(shè)存在點(diǎn)M(0,y0)滿足條件,由已知直線MP、MQ的傾斜角互為補(bǔ)角,根據(jù)斜率的關(guān)系得到2km1m2+(m-y0)(x1+x2)=0,再由韋達(dá)定理
,代入計(jì)算即可.
解答 解:(1)當(dāng)k=0時(shí),直線為y=m(m<0),聯(lián)立$\left\{\begin{array}{l}y=m\\{x^2}=-2py\end{array}\right.$,解得$\left\{\begin{array}{l}y=m\\ x=±\sqrt{-2pm}\end{array}\right.$,
所以$P({-\sqrt{-2pm},m}),Q({-\sqrt{-2pm},m})$;
(2)假設(shè)存在點(diǎn)M(0,y0)滿足條件,由已知直線MP、MQ的傾斜角互為補(bǔ)角,
即kMP=-kMQ,設(shè)P(x1,y1),Q(x2,y2),
所以$\frac{{{y_1}-{y_0}}}{x_1}=-\frac{{{y_2}-{y_0}}}{x_2}$,
又y1=kx1+m,且y2=kx2+m,
所以2km1m2+(m-y0)(x1+x2)=0①
又由$\left\{\begin{array}{l}y=kx+m\\{x^2}=-2py\end{array}\right.$消y得x2+2pkx+2pm=0,
由韋達(dá)定理:$\left\{\begin{array}{l}{x_1}+{x_2}=-2pk\\{x_1}{x_2}=2pm\end{array}\right.$,
代入①得2k•2pm+(m-y0)(-2pk)=0,
所以y0=-m,
所以M(0,-m),
故點(diǎn)M(0,-m)符合題目要求.
點(diǎn)評(píng) 本題考查了拋物線的簡(jiǎn)單性質(zhì)以及直線和拋物線的位置關(guān)系和定點(diǎn)問(wèn)題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 垂直于x軸 | B. | 垂直于y軸 | ||
C. | 既不垂直于x軸也不垂直于y軸 | D. | 方向不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com