定義在上的函數(shù)滿足:,且對于任意的,都有,則不等式的解集為 __________________.

試題分析:設,∵,∴,∴上的減函數(shù),又,所以,所以可轉化為,∴,又是底數(shù)為2的增函數(shù),∴,所以不等式的解集為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)的圖象在處的切線與軸平行,求的值;
(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),其圖象與軸交于兩點,且x1x2
(1)求的取值范圍;
(2)證明:為函數(shù)的導函數(shù));
(3)設點C在函數(shù)的圖象上,且△ABC為等腰直角三角形,記,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)當時,求的極大值點;
(2)設函數(shù)的圖象與函數(shù)的圖象交于、兩點,過線段的中點做軸的垂線分別交、于點、,證明:在點處的切線與在點處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1)若關于x的不等式有實數(shù)解,求實數(shù)m的取值范圍;
(2)設,若關于x的方程至少有一個解,求p的最小值.
(3)證明不等式:    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
(1)當a=0時,f(x)≥g(x)在(1,+∞),上恒成立,求實數(shù)m的取值范圍;
(2)當m=2時,若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個不同的零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為實數(shù),函數(shù)
(1)求的單調區(qū)間與極值;
(2)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知存在正數(shù)滿足,的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=lnx- (m∈R)在區(qū)間[1,e]上取得最小值4,則m=________.

查看答案和解析>>

同步練習冊答案