若函數(shù)f(x)=sin(2x+θ)+
3
cos(2x-θ)為奇函數(shù),則θ=
 
考點:三角函數(shù)中的恒等變換應用,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)奇函數(shù)的結(jié)論:f(0)=0列出方程,再由三角函數(shù)恒等變換的公式,求出角θ的值.
解答: 解:∵f(x)=sin(2x+θ)+
3
cos(2x-θ)是奇函數(shù),
∴f(0)=sin(0+θ)+
3
cos(0-θ)=0,
即sinθ+
3
cosθ=0,
則2sin(θ+
π
3
)=0,
∴θ+
π
3
=kπ,k∈Z,
解得:θ=kπ-
π
3
,k∈Z.
故答案為:θ=kπ-
π
3
,k∈Z.
點評:本題考查了奇函數(shù)的結(jié)論:f(0)=0靈活應用,以及三角函數(shù)恒等變換的公式應用,屬于基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,D,E分別為△ABC邊AB,AC的中點,直線DE交△ABC的外接圓于F,G兩點,若CF∥AB,證明:
(1)BC=DC;
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sinθ+cosθ
sinθ-cosθ
=2
,則2sinθcosθ=( 。
A、-
3
10
B、
3
5
C、±
3
5
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c>0且a(a+b+c)+bc=4-2
3
,則2a+b+c的最小值為( 。
A、
3
-1
B、
3
+1
C、2
3
-2
D、2
3
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是以AC為直徑的圓的內(nèi)接四邊形,AC⊥BD,F(xiàn)是PC的中點,∠BAC=60°,PD⊥平面ABC.
(1)求證:BF⊥CD;
(2)若平面PAB與平面PCD的夾角為45°,AC=2,求PD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)
a
=(x,4),
b
=(-1,2),若
a
b
的夾角為銳角,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=
1
2p
x2(p>0)的焦點與雙曲線C2
x2
3
-y2=1的右焦點的連線交C1于第一象限的點M,若C1在點M處的切線平行于C2的一條漸近線,則p=( 。
A、
3
16
B、
3
8
C、
2
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m、n是三次函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx(a、b∈R)的兩個極值點,且m∈(0,1),n∈(1,2),則
b+3
a+2
的取值范圍是( 。
A、(-∞,
2
5
)∪(1,﹢∞)
B、(
2
5
,1)
C、(-4,3)
D、(-∞,-4)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間四邊形OABC中,OB=OC,∠AOB=∠AOC=60°,則cos<
OA
,
BC
>=( 。
A、
1
2
B、
2
2
C、-
1
2
D、0

查看答案和解析>>

同步練習冊答案