【題目】在直角坐標(biāo)系xOy中,直線l的方程是,曲線C的參數(shù)方程是(φ為參數(shù)).以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線C的極坐標(biāo)方程;
(2)若是曲線C上一點,是直線l上一點,求的最大值.
【答案】(1);;(2)最大值為.
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
(2)利用三角函數(shù)關(guān)系式的變換和正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.
(1)直線l的方程是,轉(zhuǎn)換為極坐標(biāo)方程為,
曲線C的參數(shù)方程是(φ為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為,
將代入,得
∴,故.
所以曲線C的極坐標(biāo)方程為.
(2)點是曲線C上一點,
所以:,所以,
點是直線l上一點,
所以,所以,
,
當(dāng)時,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是正方形,頂點在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:)
A. 2B. C. 4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)直線為函數(shù)圖象的一條切線,若對任意的,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是橢圓C上異于A,B的點,直線交直線于點,當(dāng)點運(yùn)動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(cosθ+1)cos2x+cosθ(cosx+1),有下述四個結(jié)論:①f(x)是偶函數(shù);②f(x)在(,)上單調(diào)遞減;③當(dāng)θ∈[,]時,有|f(x)|;④當(dāng)θ∈[,]時,有|f'(x)|;其中所有真命題的編號是( )
A.①③B.②④C.①③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(x,y)是平面內(nèi)的動點,定點F(1,0),定直線l:x=﹣1與x軸交于點E,過點P作PQ⊥l于點Q,且滿足 .
(1)求動點P的軌跡t的方程;
(2)過點F作兩條互相垂直的直線,分別交曲線t于點A,B,和點C,D.設(shè)線段AB和線段CD的中點分別為M和N,記線段MN的中點為K,點O為坐標(biāo)原點,求直線OK的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)若,且為函數(shù)的一個極值點,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,且函數(shù)的圖象恒在軸下方,其中是自然對數(shù)的底數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
若函數(shù)在上是增函數(shù),求實數(shù)a的取值范圍;
若,且對任意,,,都有,求實數(shù)a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com